Recenzja rozprawy doktorskiej

mgr. inż. Macieja Bartolda

pod tytulem

"Zastosowanie wieloletnich obserwacji satelitarnych do monitorowania vegetacji lasów w Polsce"

wykonanej na Wydziale Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego

pod kierunkiem prof. dr. hab. Katarzyny Dąbrowskiej-Zielińskiej

Podstawa recenzji

Recenzję wykonalem na podstawie uchwały Rady Wydziału Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego powołującej mnie na recenzenta pracy (pismo Dziekana WGisR UW z dnia 7.06.2019 r. bez sygnatury).

Wstęp

Człowiek od najdawniejszych czasów pilnie obserwował przyrodę, gdyż od niej wciąż zależy jego byt: terminy migracji zwierząt lądowych, okresy występowania owadów i fazy rozwoju roślin (pozwy) powtarzają się cyklicznie, choć są modyfikowane przez wiele czynników, z których najważniejszymi są te związane z klimatem.

Rozprawa dotyczy ważnych zagadnień o znaczeniu poznawczym oraz praktycznym, gospodarczym. Może przyczynić się do zrozumienia procesów zachodzących w lasach wynikających ze zmian klimatycznych. Praktyczny wymiar pracy to wkład do regionalizacji przyrodniczo-leśnej i opracowania nowych zasad hodowli lasu, uwzględniających przestrzenną zmienność okresu wegetacyjnego w Polsce.

Niezbytne do badania okresu wegetacyjnego dane można pozyskiwać na różne, mniej lub bardziej praciechlonne sposoby o różnej dokładności. Niekiedy warto mieć mniej dokładne dane, ale obejmujące większe obszary. Takie możliwości daje współczesna teledetekcja. Te nowe wsparcia możliwości wynikają z dwóch przyczyn – dysponujemy
nowymi technikami pozyskiwania i nowymi metodami przetwarzania danych, na dodatek w
archiwach nagromadzonych jest wiele informacji, których wartości chyba jeszcze nie
doceniamy. Zagadnienia o takim charakterze są treścią rozprawy doktorskiej pana mgr. inż.
Macieja Bartolda.

Charakterystyka i ocena rozprawy

Rozprawa doktorská pana mgr. inż. Macieja Bartolda została przygotowana na Wydziale
Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego pod opieką prof. dr. hab.
Katarzyny Dąbrowskiej - Zielińskiej z Instytutu Geodezji i Kartografii w Warszawie i dotyczy
zagadnień, które są od wielu lat przedmiotem zainteresowań badawczych Autora pracy,
Promotora i Instytutu.

Tytuł rozprawy odbiega w pewnym zakresie od jej zawartości, gdyż sugeruje, że
będzie mowa o wszystkich lasach w Polsce, tymczasem Autor ograniczył zakres do lasów
liściastych. I chyba taki był początkowy zamiar, skoro w tytule angielskim [s. 5, w. 1] mamy
"...vegetation of broad-leaved forest in Poland"? Takiemu zakresowi podporządkowana jest
także cała dalsza treść pracy.

Rozprawa ma klasyczny układ, typowy dla tego rodzaju opracowań. Całość rozprawy
zmieściła się na 156 stronach i została podzielona na 8 ponumerowanych rozdziałów plus
„Bibliografia” oraz spisy stron internetowych, rycin i tabel. Główny tekst (od rozdziału
Kolejność rozdziałów jest odpowiednia, natomiast można zgłosić uwagę co do ich wielkości,
podziału na podrozdziały i wzajemnych proporcji. Wstęp jest moim zdaniem zbyt obszerny
i nosi cechy przeglądu literatury. Treść wyróżnionych w nim podrozdziałów, wraz z tytułami,
mogłyby w zasadzie znaleźć się w rozdziale „2. Przegląd literatury”. We wstępie i w
rozdziałach „4. Obszar i obiekt badań” oraz „5. Materiały i metody badawcze” znajdują się na
początku fragmenty tekstu, którego nie zaliczono do żadnego z dalej wyróżnionych
podrozdziałów. Moim zdaniem należało je jakoś zatytułować, choćby np. „1.1. Definicje okresu
wegetacyjnego”, „4.1. Definicja lasu” oraz „4.2. Bazy danych o lasach” itd., a w rozdziale
piątym: „5.1. Obserwacje satelitarne rejestrowane sensorami VEGETATION”, „5.2. Maska
obszarów leśnych” itd.

Na początku pracy znajduje się abstrakt (w językach polskim i angielskim), następnie
spis treści. W rozdziale „1. Wprowadzenie” (10 s.) Autor zaznajamia czytelników z problemem
wyznaczania okresu wegetacyjnego w Polsce, tj. jego początku i długości trwania. Przytacza
i omawia liczne definicje zaczepnięte z bogatej przestudiowanej literatury rolniczej i leśnej.
Drug podrozdział dotyczy programu VEGETATION – satelitów, sensorów, dostarczanych danych oraz ich dotychczasowych zastosowań.


W następnych podrozdziałach znajdziemy opisy teledektekacyjnych wskaźników wegetacji lasów (RVI, NDVI, EVI, SAVI, MSAVI) i ich zastosowań. Duże znaczenie ma, w kontekście zakresu pracy, podrozdział „2.3. Szeregi czasowe obserwacji satelitarnych lasów”. Przedstawiono tu zarówno źródła wieloterminowych danych teledektekacyjnych jak i dotychczas stosowane metody i oprogramowanie służące do ich przetwarzania w celu określenia początku i długości trwania sezonu wegetacyjnego. Dalsze podrozdziały poświęcone są systemom naziemnym (rozdz. 2.4) oraz najnowszym w teledektekacji systemom bezzałogowych statków powietrznych. Bardzo dobrym rozwiązaniem jest opracowanie podrozdziału poświęconego podsumowaniu aktualnego stanu wiedzy. Autor podkreśla tu słusznie m.in., że stosowane techniki mają różne ograniczenia, które wpływają na powtarzalność obserwacji, ich zasięg przestrzenny oraz najważniejsze wielkości – dokładność określania terminów początku i długości trwania faz fenologicznych.

Należy podkreślić, że na potrzeby opracowania przeglądu literatury przedmiotu badań Autor wykorzystał łącznie z 333 źródła, z czego, jak policzyłem, 67% stanowiły pozycje zagraniczne, w zdecydowanej większości angielskie. Składają się na nie głównie artykuły naukowe z czasopism, rzadziej książki i źródła z Internetu (12 pozycji). Dominują pozycje z bieżącego stulecia, co jest uzasadnione krótką historią rozwoju i zastosowań w leśnictwie satelitarnych metod badania sezonu wegetacyjnego. Dobór literatury uważam za właściwy, gdyż w pełni nawiązuje do różnych wątków rozprawy i została w niej odpowiednio wykorzystana. Podkreślić należy, że Autor ma bardzo szerokie spojrzenie na zagadnienie okresu wegetacyjnego, bowiem nie ograniczał się do literatury teledektekacyjnej, lecz także sięgnął do wielu pozycji z zakresu rolnictwa, leśnictwa czy klimatologii.

Odpowiednie sformułowanie hipotez badawczych, a następnie celów głównych i szczegółowych (pomocniczych) jest bardzo istotne w pracach naukowych, bowiem
wyznacza ścisłe zakres pracy i determinuje dobór metod badawczych. Autor rozprawy pisze o tym w rozdziale zatytułowym „3. Problem badawczy, cel i zakres pracy” (3 s.), który został podzielony na trzy podrozdziały. Niezbędne udane jest sformułowanie problemu badawczego, którym wg mgr. inż. Macieja Bartolda jest „brak w polskim leśnictwie opracowania okresu wegetacyjnego lasów liściastych, określającego na podstawie danych teledetekcyjnych, i obejmującego swoim zasięgiem obszar całego kraju”. Problemem badawczym nie jest bowiem brak opracowań, lecz właśnie to czym się zajął, czyli podjęta przez Autora próba opracowania metody określania początku i długości trwania okresu wegetacyjnego na podstawie danych teledetekcyjnych. Do celów szczegółowych zaliczył bym natomiast i w takiej kolejności: (1) ocenę przydatności danych satelitarnych misji VEGETATION do monitorowania okresu wegetacyjnego lasów liściastych w Polsce, (2) sprawdzenie czy do tych celów nadaje się program TIMESAT oraz (3) czy zmieniające się warunki atmosferyczne wyjaśniają przesunięcia startu i końca okresu wegetacyjnego wyznaczonego metodą teledetekcyjną, (4) czy skład gatunkowy lasów liściastych ma wpływ na datę początku sezonu wegetacyjnego i (5) czy przy niskiej rozdzielczości przestrzennej zdjęć satelitarnych (rzędu 1 x 1 km) pozwala na uzyskanie wiarygodnych wyników monitorowania okresu wegetacyjnego lasów? Duża część rozdziału „3.2. Cel pracy” (od s. 39, w. 4 od dołu do końca s. 40) powinna znaleźć się w rozdziale „5. Materiały i metody badawcze”. Dobrze opisany został zakres pracy (rozd. 3.3.). W całym rozdziale „3. Problem badawczy, cel i zakres pracy” nie ma formalnie postawionej hipotezy badawczej, która sformułowana w postaci zdania twierdzącego podlegalaby weryfikacji – przyjęciu lub odrzuceniu w wyniku przeprowadzonych analiz. W niniejszej pracy mogłaby ona brzmieć tak: „Za pomocą danych satelitarnych projektu VEGETATION, z wykorzystaniem oprogramowania TIMESAT, można z wystarczającą dokładnością określić terminy trwania okresu wegetacyjnego lasów liściastych w Polsce”.

Rozdział „4. Obszar i obiekt badań” (12 s.) jest dobrze napisany, jeśli wziąć pod uwagę jego zawartość. Autor obserwuje i kompetentnie omawia szereg uwarunkowań natury formalnej (ustawowe i inne definicje lasu) i ich znaczenie w badaniach teledetekcyjnych. Można natomiast zmienić nieznacznie jego podział na podrozdziały, o czym już pisalem. Niezbędne dobrze Autor dobrał ilustracje drzew liściastych występujących w Polsce gdyż pochodzą ze źródeł obcych i przedstawiają drzewa w ich wyglądzie jesiennym. W tym miejscu woląbym widzieć zdjęcia wykonane samodzielnie.

tworzenia obrazów wskaźnika vegetacji NDVI, maski obszarów leśnych, sposób pracy i wykorzystania programu TIMESAT, opracowanie danych meteorologicznych oraz analizy statystyczne. Warto podkreślić, że w literaturze brak jest statystycznych opracowań związków danych satelitarnych i informacji klimatycznych z obserwowanymi pojawami fenologicznymi, czyli przestrzennym rozkładem terminów początku okresu wegetacyjnego i innych wielkości charakteryzujących jego przebieg. Autor włożył w przygotowanie i opracowanie tej części pracy duże wysiłki. Podkreślenia wymaga twórcze podejście do problemu, co uważam za znaczące osiągnięcie. Muszę tutaj jednak zwrócić uwagę, że Autor posługuje się dosyć często skrótami myślowymi i niektóre opisy stają się mało czytelne. W omawianym rozdziale stwierdził, że wzór nr 1 [s. 65] służy do „wyznaczania progu okresu wegetacyjnego”, tymczasem jest to wzór na ustalenie wartości progowej wskaźnika vegetacji NDVI. Dopiero dzień w którym NDVI osiąga ten próg jest uznawany za początek okresu wegetacyjnego. Zastanawiające może być też przyjęcie jednakowej wartości progu dla początku i końca okresu wegetacyjnego dla wszystkich osiemnastu lat kalendarzowych serii czasowej uwzględnionej w badaniach (1999-2016), bowiem jak dobrze wiemy, przebieg zmian NDVI w poszczególnych latach są różne (są lata chłodne i ciepłe). Tak jak przyjął Autor było zapewne łatwiejsze w realizacji, czego zresztą nie uważam za błąd, bowiem w badaniach często trzeba przyjmować pewne uproszczenia. W ostatnim podrozdziale – „5.5. Analizy statystyczne” – znajdujemy hipotezę zerową, na której brak wskazywałam omawiając rozdział „3. Problem badawczy, cel i zakres pracy”. Znajduje się tutaj ponieważ Autor wiąże ją bezpośrednio z wykonanymi analizami statystycznymi, a nie ogólną treścią rozprawy.

Rozdział „6. Wyniki badań” jest również dobrze napisany. Autor w pierwszej kolejności omawia problem opracowanej przez siebie maski lasów (rozdz. 6.1.), szczegółowo i przekonująco przedstawiając znaczenie przyjętych kryteriów jej konstrukcji oraz znaczenie dla statystyk obszarów leśnych w poszczególnych krainach przyrodniczo-leśnych. Nie zrozumiałem do końca konstrukcji rycin 24 i 25. Czy należy je odczytać jako wykresy maksymalnych różnic NDVI między obszarami dla maski ≥50% lasów liściastych oraz maski ≤50% tych lasów, czy też zawarte są tam wartości ΔNDVI dla każdego piksela (oczywiście spełniającego kryterium doboru, należącego do lasów)? Ta kwestia powinna być lepiej w pracy przedstawiona. Zastosowany w pracy program TIMESAT wymaga dobrej znajomości jego funkcjonowania, czego dowód Autor przedstawił w obszernym rozdziale 6.2. Zawarte w rozdziale treści są ilustrowane rycinami, z których części można by nadać inny wygląd – np. na ryc. 32-35 przedstawiono zmiany terminów początku, końca i długości trwania okresu wegetacyjnego oraz wartości maksimum NDVI w poszczególnych latach z zastosowaniem funkcji ciągłej. Tymczasem są to spostrzeżenia od siebie odrębne i trudno oczekiwać, że istnieje jeszcze jakiś sensowna wartość dla dowolnego miejsca na osi czasu między
poszczególnymi latami. Dodatkowo nałożenie linii na siebie utrudnia poprawne odczytanie rysunku. Warto zwrócić moim zdaniem uwagę na to przy przygotowywaniu pracy do druku, na co w pełni zasługuje i do czego Autora zachęcam. W dalszych podrozdziałach (6.3, 6.4) opisano obszernie wyniki analizy wpływu warunków atmosferycznych na zmiany okresu wegetacyjnego lasów liściastych oraz wpływ zróżnicowania składu gatunkowego lasów na terminy początku okresu wegetacyjnego. Autor zauważył ujemną zależność według której „im wyższa maksymalna temperatura powietrza, tym [bardziej jest – dopisem mój] przyspieszony, wcześniejszy start okresu wegetacyjnego”. Wynik poniekąd oczywisty, ale jego wartość polega na tym, że został potwierdzony w naukowy sposób. Niepotrzebnie w pracy omawiane są obszernie [np. na s. 103] zawartości tabel, skoro można je dosyć łatwo samodzielnie odczytać. Mam trudność ze zrozumieniem ryc. 44 [s. 105] bowiem na osiach poziomej i pionowej wymienione są inne zmienne niż w przedstawionym równaniu regresji. Nieznacznie należałoby zmienić tytuł rozdz. 6.4. – obecnie brzmi on „Wpływ zróżnicowania drzew liściastych na terminy początku okresu wegetacyjnego”. Oczywiście jest bowiem, że drzewa rozwijają się w różnych terminach i tempie i wobec tego wyznaczone według nich daty początku sezonu wegetacyjnego różniłyby się. Ponadto analizowane są nie gatunki drzew i nie pojedyncze drzewa lecz w dużej części składające się z kilku gatunków drzewostany występujące w pikselach zastosowanej maski lasów. Zatem należałoby tytuł sformułować następująco „Wpływ zróżnicowania składu gatunkowego drzewostanów liściastych na terminy początku okresu wegetacyjnego”. Ostatnia część rozdziału 6. jest poświęcona ocenie zgodności terminów początku i końca okresu wegetacyjnego określonych dwoma sposobami – na podstawie danych teledetekcyjnych i meteorologicznych. Autor nie uległ pokusie ogłoszenia tutaj dużego sukcesu, bowiem rzetelnie stwierdza, że „otrzymano zgodność z meteorologicznym okresem wegetacyjnym na poziomie 75%”. Liczba nie wygląda imponująco, zważmy jednak, że w metodach teledetekcyjnych jest to całkiem dobry wynik. Ważnym stwierdzeniem jest postulat poprawienia metodyki teledetekcyjnej w przypadku rozproszonych grup pikseli „leśnych” (w masce) i zróżnicowanych pod względem udziału drzew liściastych. Dodajmy także, że obarczonych dużym ryzykiem włączenia do nich obszarów niebędących lasami.

Rozdział „7. Analiza i dyskusja wyników” to popis badawczych umiejętności Autora rozprawy. W dobrze napisanym tekście kolejno interpretuje i konfrontuje z wynikami innych badań uzyskane przez siebie rezultaty we wszystkich płaszczyznach przeprowadzonych badań. Tylko na początku tego rozdziału (wszak poświęconego omówieniu własnych wyników) Autor poszedł nieco dalej pisząc o zastosowaniu programu TIMESAT do prognozowania przebiegów wskaźnika wegetacji, czym się przecież w pracy nie zajmował.
Syntetyczne ujęcie rezultatów tych jakże obszernych badań znajdujemy w rozdziale „8. Podsumowanie i wnioski”. Kolejno, jak w poprzednim rozdziale, tym razem w 17 punktach, Autor przechodzi przez wszystkie analizowane w pracy zagadnienia opatrując je syntetycznym komentarzem. Stanowią one także w pewnym zakresie cenne wytyczne do przyszłych badań lub zastosowań.

Ogólnie mój odbiór rozprawy jest dobry. Szczególnie warto zwrócić uwagę na przejrzyistość treści, kolejność też, obszerność podjętej tematyki zarówno w ujęciu merytorycznym, jak i skali wykonanych obliczeń, analiz, przetworzeń obrazów itp. Autor zintegrował w tym opracowaniu dane pochodzące z wielu źródeł. Wykazał się dużą wiedzą i umiejętnościami praktycznymi.

Niestety w rozprawie są nią liczne usterki redakcyjne, które polegają np. na pominięciu wyrazów (np. brak słowa „danych” na s. 109, w. 5 od góry lub „wegetacyjnego” na s. 114, w. 15 od góry) lub ich części (np. „jesiony” zamiast „jesionu” na s. 108 w. 3 od góry), zamianie liter a, e, na a oraz e, końcówek „ć” na „ci” i odwrotnie. Niekiedy pojawiają się niepotrzebne słowa (np. „ujętych” na s. 114, w. 6 od dołu). W wielu miejscach niezbędne jest poprawienie stylu (np. nie rozpoczynać nowego akapitu od słów „Dlatego też...” [s. 24]). W niektórych miejscach zmienione słowa zmieniają sens lub utrudniają zrozumienie zdania (np. „ich przetworzenia opierają się na doskonale rozwiniętym algorytmie do korekcji atmosferycznej...” zamiast „... na doskonale rozwiniętych algorytmach...” [s. 40]). Do tekstu wkładła się też zwroty żargonowe lub kolokwialne, nie przystające do pracy o charakterze naukowym. Autor pisze w kilku miejscach (np. na s. 26, 45) że gleba była „goła”, albo o komputeryzacji „robienia” zdjęć (s. 35).

Na s. 52 pojawił się niewystępujący w Polsce gatunek „akacja” (w. 11 od góry), zamiast robił inaczej grochodrzewu. Można też odnieść wrażenie, że jawor nie jest klonem (tutaj należałyby pisać klon jawor, klon pospolity, albo że osika nie jest topolą (w tab. 3).

Wymienione powyżej niedostatki redakcyjne rozprawy nie wpływają na jej merytoryczną wartość. Mogą być w łatwo usunięte, przy pewnej staranności i dystansie do podpowiedzi komputerowego edytora tekstu, podczas przygotowywania całości lub fragmentów do druku.

Konkluzja

Rozprawa doktorska mgr. inż. Macieja Bartolda to kompletne, wyczerpujące, spójne, odpowiednio umocowane w literaturze oraz zweryfikowane w toku zrealizowanych badań empirycznych, naukowe opracowanie zagadnienia zastosowania danych teledetekcyjnych do
określańa początku i długości okresu wegetacyjnego w skali całego kraju, krain przyrodniczo-leśnych lub powierzchniowych obiektów ochrony przyrody. Rozprawa stanowi ważny wkład w rozwój teledetekcyjnych metod badania okresu wegetacyjnego lasów. Jest to bardzo obszernie, wielowątkowe i wartościowe opracowanie.

Stwierdzam, że praca doktorska mgr. inż. Macieja Bartolda pod tytułem: "Zastosowanie wieloletnich obserwacji satelitarnych do monitorowania wegetacji lasów w Polsce" spełnia warunki stawiane pracom doktorskim określone w Ustawie o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki z 14 marca 2003 r. (tekst jednolity Dz.U. z 27 września 2017 r., poz. 1789) i wnoszę o jej przyjęcie oraz dopuszczenie Doktoranta do dalszych etapów przewodu doktorskiego.

Jednocześnie, biorąc pod uwagę liczne walory pracy, wnoszę o jej wyróżnienie.

[Podpisanie]

Dr hab. inż. Krzysztof Będkowski, prof. Ut.