

ANOMALIE KLIMATU W EUROPIE W OSTATNIM TYSIĄCLECIU (X-XXI)

100 LAT GEOGRAFII (1918-2018) W UNIWERSYTECIE WARSZAWSKIM UNIVERSITY OF WARSAW FACULTY OF GEOGRAPHY AND REGIONAL STUDIES

JERZY BORYCZKA, MARIA STOPA-BORYCZKA

XL. CLIMATE ANOMALIES IN EUROPE IN THE LAST MILLENNIUM (X-XXI)

atlas

OF INTERDEPENDENCE OF METEOROLOGICAL AND GEOGRAPHICAL PARAMETERS IN POLAND

Warszawa 2018

UNIWERSYTET WARSZAWSKI WYDZIAŁ GEOGRAFII I STUDIÓW REGIONALNYCH

JERZY BORYCZKA, MARIA STOPA-BORYCZKA

XL . ANOMALIE KLIMATU W EUROPIE W OSTATNIM TYSIĄCLECIU (X-XXI)

atlas

WSPÓŁZALEŻNOŚCI PARAMETRÓW METEOROLOGICZNYCH I GEOGRAFICZNYCH W POLSCE

Warszawa 2018

Komitet Redakcyjny

Maria STOPA-BORYCZKA Jerzy BORYCZKA Jolanta WAWER Władysław ŻAKOWSKI

Recenzent

Bohdan Mucha Lwowski Uniwersytet im. Iwana Franki Ukraina

© Copyright by Wydział Geografii i Studiów Regionalnych UW 2018

ISBN 978-83-63245-98-6

SPIS TREŚCI

I.	WPROWADZENIE	5
II.	ANOMALIE TEMPERATURY POWIETRZA W POLSCE W XVIII-XXI WIEKU	9
2.1.	Ekstrema temperatury powietrza w Warszawie w latach 1779-2017	11
2.2.	Ekstrema temperatury powietrza w Krakowie w latach 1826-2017	29
2.3.	Ekstrema temperatury powietrza we Wrocławiu w latach 1792-2017	47
III.	ANOMALIE TEMPERATURY POWIETRZA W EUROPIE W MIASTACH W PROFILU POŁUDNIKOWYM (XVIII-XXI)	65
3.1.	Ekstrema temperatury powietrza w Paryżu w latach 1757-2011	67
3.2.	Ekstrema temperatury powietrza w Berlinie w latach 1769-2017	85
3.3.	Ekstrema temperatury powietrza w Moskwie w latach 1780-2017	103
IV.	ANOMALIE TEMPERATURY POWIETRZA W EUROPIE W MIASTACH	
	W PROFILU RÓWNOLEŹNIKOWYM (XVIII-XXI)	121
41.	Ekstrema temperatury powietrza w Sztokholmie w latach 1756-2012	123
4.2.	Ekstrema temperatury powietrza w Tallinie w latach 1779-2017	141
43.	Ekstrema temperatury powietrza w Wiedniu w latach 1775-2012	159
4.4.	Ekstrema temperatury powietrza w Rzymie w latach 1811-2012	177
V	ANOMALIE KLIMATU EUROPY W OSTATNIM TYSIĄCLECIU X-XX	105
F 4		195
5.1.	Zarys badan dendrokilmatycznych Mreźno zimu w Delece w XIVI. wieku wodług źródeł bieterycznych	195
53	Ekstrema szerokości słojów drzew rospacych w Europie (VII-XX)	190
5.4.	Ekstrema szerokości słojów debów rosnących w Polsce (X-XX)	231
VI.	REKONSTRUKCJA I NOWE PROGNOZY TEMPERATURY POWIETRZA	247
61	Rekonstrukcja i prograzy zmian temperatury, powietrza w Warszawie w tv-	247
6.2	siącleciu 1500-2500 według pomiarów z lat 1779-2015	243
0.2.	ciu 1500-2500 według pomiarów z lat 1826-2017	317
6.3.	Rekonstrukcja i prognozy zmian temperatury powietrza we Wrocławiu	•
	w tysiącleciu 1500-2500 według pomiarów z lat 1792-2017	369
VII.	PROBLEMY BADAŃ WSPÓŁCZESNYCH ZMIAN KLIMATU ZIEMI	421
7.1.	Zmiany wiekowe klimatu Europy z uwzglednieniem prognoz w XXI wieku i ich	
	weryfikacja	424
7.2.	Postęp badań zmian klimatu Ziemi w ostatnim tysiącleciu (X-XXI)	433
7.3.	Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według danych dendro-	
	logicznych	451
7.4.	Postęp badan naturalnych zmian klimatu Europy w pierwszej dekadzie XXI wie- ku w odniesieniu do drugiej połowy XX wieku	461
VIII.	PROMOCJA METODY SINUSOID REGRESJI J. BORYCZKI W PUBLIKACJACH KATEDRY INŻYNIERII LEŚNEJ AKADEMII ROLNICZEJ W POZNANIU	475
IX.	ZAKOŃCZENIE	479
Х.	WYKAZ PRAC MAGISTERSKICH ZAKŁADU KLIMATOLOGII UW	
	DOTYCZĄCYCH CYKLICZNOŚCI I TENDENCJI ZMIAN KLIMATU W EUROPIE	
	(1984-2015)	505
XI.	LITERATURA	507

ROK 1221 – EUROPA – POWODZIE

"Od świąt bowiem Wielkanocnych aż do jesieni ciągle panujące deszcze i słoty takie sprawiły rzek wylewy, że od nadzwyczajnego wód wezbrania lękano się w kraju prawdziwego prawie potopu. Ta straszliwa i niezwykła powódź wiele wsi w nizinach leżących całkiem niemal zniszczyła i zalała, przeszkodziła siewom wiosennym, a co w jesieni posiano, to zniweczyła do szczętu; nie wiele tylko miejsc, kędy pola na wzgórkach i innych wyżynach były położone, od tej plago ocalało. Zniszczone przeto takimi zalewami zboża wielką klęską dotknęły nie tylko Polskę, ale i wszystkie kraje okoliczne, gdzie podobne panowały powodzie. Bo gdy bydlętom domowym zabrakło paszy, upadały naprzód obory, a potem nastał głód ciężki, który przez trzy lata nie ustając, siła ludzi, a zwłaszcza wieśniaków, dla braku żywności wymorzył i tak dalece wytępił, że wiele wsi i miasteczek z ludności ogołoconych stało prawie pustkami. Klęskę tę sprawioną zbytecznymi słoty, powiększyła jeszcze sroga i niezwykłej ostrości zima, która po tych deszczach nastąpiła ...".

ROK 1473 – EUROPA – SUSZA

"Rok ten pamiętny był dla całej Europy i dla Królestwa Polskiego nadzwyczajnymi słońca, upały i suszą nieprzerwaną; pojawienie się bowiem poprzednie komety zrządziło niesłychane skwary i brak wody, tak że źródła wszystkie powysychały i największe rzeki w Polsce można było w bród przebywać. Nie tylko pod Krakowem, Sandomierzem, Warszawą, Płockiem ale i pod Toruniem Wisła tak była płytka. Paliły się we wszystkich stronach Polski lasy, bory, krzaki i zarośla ogniem iewstrzymanym, który nie dał się ugasić, póki wszystkiej drzewiny z korzeniami nie strawił. Słychać było wszędy trzask i łomot upadających drzew. Pasieki także i barcie w lasach pogorzały, zasiewy wiosenne zbytnia susza powypalała".

Ekstremalne zjawiska pogodowe w X-XVI wieku (wg Kronik)

I. WPROWADZENIE

Prezentowany 40 tom *Atlasu wspólzależności parametrów meteorologicznych i geograficznych w Polsce* pt. *Anomalie klimatu w Europie w ostatnim tysiącleciu (X-XXI)* dotyczy głównie ekstremów wiekowych temperatury powietrza i rocznych przyrostów (słojów) drzew rosnących w Europie. Istotne znaczenie poznawcze mają także rekonstrukcje i nowe prognozy zmian temperatury powietrza w Polsce w tysiącleciu 1500-2500.

W rozdziale II. Anomalie temperatury powietrza w Polsce w XVIII-XXI wieku określono ekstrema temperatury powietrza w Polsce (minima i maksima) na podstawie wyników pomiarów wykonanych w trzech miastach: w Warszawie – w latach 1779-2017, Krakowie – 1826-2017 i Wrocławiu – 1792-2017.

Za wyjątkowe pod względem termicznym uznano te miesiące, pory roku i rok, w których średnia temperatura (*T*) różni się od średniej wieloletniej (T_{sr}) co najmniej o 2 odchylenia standardowe (σ), np.: $T_{\text{inf}} \leq T_{\text{sr}}$ -2 σ – bardzo mroźna zima (BMZ) i $T_{\text{sup}} \geq T_{\text{sr}}$ +2 σ – bardzo ciepła zima (BCZ). O największych ochłodzeniach i ociepleniach klimatu informują daty ekstremów – minimów t_{inf} , T_{inf} i maksimów t_{sup} , T_{sup} .

W rozdziale III. Anomalie temperatury powietrza w Europie w miastach w profilu południkowym (XVIII-XXI) określono ekstrema temperatury powietrza na podstawie wyników pomiarów w trzech miastach: w Paryżu – w latach 1757-2011, Berlinie – 1769-2017 i Moskwie – 1780-2017.

W rozdziale IV. Anomalie temperatury powietrza w Europie w miastach w profilu równoleżnikowym (XVIII-XXI) – ekstrema temperatury powietrza (lokalne minima i maksima) wyznaczono na podstawie wyników pomiarów w czterech miastach: w Sztokholmie – w latach 1756-2012, Tallinie – 1779-2017, Wiedniu – 1775-2012i Rzymie – 1811-2012. O anomaliach termicznych informują daty wieloletnich minimów (t_{inf}, T_{min}) i maksimów (t_{sup}, T_{sup}) temperatury powietrza.

Najbardziej mroźne zimy – o najniższych wartościach temperatury T_{\min} (°C) w profilach południkowym $T(\lambda)$ i równoleżnikowym $T(\varphi)$ wystąpiły w latach:

$T(\lambda)$	t_{\min}	T_{\min}	$T(\phi)$	t _{min}	T_{\min}
Paryż	1830	-1,60	Sztokholm	1809	-8,67
Berlin	1830	-6,63	Tallin	1829	-11,83
Warszawa	1830	-9,20	Wiedeń	1929	-2,30
Kraków	1830	-10,30	Wroclaw	1830	-10,30
Moskwa	1893	-16,83	Rzym	1929	5,20

Porównano też histogram i dystrybuantę empiryczną temperatury powietrza w zimie w Warszawie, Paryżu i Tallinie z rozkładem normalnym (Gaussa) i dystrybuantą teoretyczną.

W rozdziale V. Anomalie klimatu Europy w ostatnim tysiącleciu X-XX według danych dendrologicznych za wyróżniający się pod względem termicznym uznano ten rok, w którym grubość słoja danego drzewa (d) różni się od średniej wszystkich jego słojów (d_{sr}) (średniej wieloletniej) co najmniej o dwa odchylenia standardowe (σ): $d_{inf} \leq d_{sr}$ -2 σ – bardzo zimny (BZ), $d_{sup} \geq d_{sr}$ +2 σ – bardzo ciepły (BC).

W podrozdziale. 5.2. Mroźne zimy w Polsce w X-XVI wieku według źródeł historycznych porównano minima grubości słojów 4 drzew (t_{inf}, d_{inf}) – bardzo zimny (BZ) z mroźnymi zimami od 940 roku według kronik historycznych. Natomiast w podrozdziałach 5.3. Ekstrema szerokości słojów drzew rosnących w Europie (VII-XX) i 5.4. Ekstrema szerokości słojów dębów rosnących w Polsce (X-XX) wzięto pod uwagę roczne przyrosty drzew badanych pod względem okresowości w tomie XX-XXI Atlasu. Analizie statystycznej poddano słoje 30 drzew – sosny, świerka, modrzewia, jodły i dębu rosnących w Europie oraz 14 dębów – z obszaru Polski.

W rozdziale VI. *Rekonstrukcja i nowe prognozy zmian temperatury powietrza* w *Polsce w tysiącleciu 1500-2500* przedstawiono rekonstrukcje (od roku 1500) i prognozy (do roku 2500) temperatury powietrza w poszczególnych miesiącach, porach roku i roku, według danych: w Warszawie – z lat 1779-2015, Krakowie – 1826-2017 i Wrocławiu –1792-2017).

Wyznaczono dwie wypadkowe interferencji cykli: F(t), f(t) – ze składnikiem liniowym *at* i bez składnika liniowego (*at* = 0), stosując metodę *sinusoid regresji* J. Boryczki (1998):

$$F(t) = a_o + at + \sum_{j=1}^{k} b_j \sin\left(\frac{2\pi}{\theta_j}t + c_j\right)$$
(1)

Uwzględniono *k* istotnych statystycznie ("najsilniejszych") cykli według testu Fishera-Snedecora *F*. Jeżeli minimum lokalne widma oscylacji temperatury powietrza było poza przedziałem $\Theta \ge 250$ lat, to uwzględniono dodatkowo najdłuższy okres $\Theta = 178,9$ lat (cykl astronomiczny).

W rozdziale VII. *Problemy badań współczesnych zmian klimatu Ziemi* szczególne znaczenie mają cykliczne zmiany klimatu Europy i ich przyczyny, tendencje wiekowe, rekonstrukcja i prognoza zmian w XXI wieku oraz ich sprawdzalność (weryfikacja) (podrozdz. 7.1). W kolejnym podrozdziale 7.2. *Postęp badań zmian klimatu Ziemi w ostatnim tysiącleciu (X-XXI)* omówiono zmiany klimatu Ziemi i ich przyczyny określone według promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$, izotopu tlenu δ^{18} O w rdzeniu lodowym z wyspy Devon, substancji organicznych w polskich jeziorach, danych dendrologicznych, meteorologicznych, astronomicznych i historycznych (Atlas, t. XXXVI). Na początku przedstawiono zmiany klimatu Ziemi według cykli parametrów orbity eliptycznej (rekonstrukcję od 1 miliona lat temu i prognozę na przyszły 1 milion lat) według wyznaczonych dobowych sum promieniowania słonecznego *I* (MJ·m⁻²) w lecie (VI-VIII) i w miesiącach marzec-wrzesień (III-IX) na górnej granicy atmosfery, wzdłuż równoleżnika $\varphi = 65^{\circ}$ N.

Koincydencja dat ochłodzeń i ocieplenia klimatu w Holocenie i ekstremów izotopu tlenu δ^{18} O w rdzeniu lodowym z wyspy Devon oraz składu chemicznego osadów w Jez. Wikaryjskim i Jez. Gościąż) świadczy, że przyczyną holoceńskiego ocieplenia klimatu był wzrost sum promieniowania słonecznego w miesiącach marzec-wrzesień, wywołany zmianami orbity Ziemi.

Należy zauważyć też "równoległość" przebiegów wiekowych (od -12 000 lat temu): substancji organicznych (%), węglanów wapnia (CaCO₃) i tlenków żelaza (Fe₂O₃), zdeponowanych w osadach Jez. Gościąż, z sumami promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$ w okresie marzec-wrzesień.

Istotne znaczenie mają też wyniki badań przedstawione w podrozdziałach: 7.3. Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według danych dendrologicznych i 7.4. Postęp badań naturalnych zmian klimatu Europy w pierwszej dekadzie XXI wieku w odniesieniu do drugiej połowy XX wieku.

Na uwagę zasługują również rozdziały: VIII. Promocja metody sinusoid regresji J. Boryczki w publikacjach Katedry Inżynierii Leśnej Akademii Rolniczej w Poznaniu i IX. Wykaz prac magisterskich Zakładu Klimatologii UW dotyczących cykliczności i tendencji zmian klimatu w Europie (1984-2015).

W rozdz. X. Zakończenie porównano dodatkowo na wykresach ($T^{\circ}C, t - czas$) daty 10 najmroźniejszych i najcieplejszych zim (XII-II) i roku (I-XII) z wymienionych wyżej 10 miast w Europie. Ponadto minima rocznych przyrostów niektórych drzew porównano z mroźnymi zimami według kronik historycznych.

II. ANOMALIE TEMPERATURY POWIETRZA W POLSCE W XVIII-XXI WIEKU

O anomaliach termicznych (największych ochłodzeniach i ociepleniach klimatu) informują daty minimów (t_{inf} , T_{inf}) i maksimów (t_{sup} , T_{sup}) temperatury powietrza.

Ekstrema temperatury powietrza w Polsce określono na podstawie wyników pomiarów wykonanych w trzech miastach: w Warszawie, Krakowie i Wrocławiu o szerokości geograficznej φ , długości λ i wysokości nad poziomem morza *H*:

	Okres	φ	λ	Н
Warszawa	1779-2017	52°13'N	21002'E	110
Kraków	1826-2017	50°04'N	19°57'E	221
Wrocław	1792-2017	51°08'N	16°59'E	116

Istotne znaczenie poznawcze ma porównanie histogramu i dystrybuanty empirycznej średnich wartości temperatury powietrza (*T*) z rozkładem normalnym f(T) i f(t)i dystrybuantą rozkładu normalnego $F(t_0)$ (rys. 1).

$$f(T) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{T-T_{ST}}{\sigma}\right)^2} , f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} , F(t_0) = \int_{-\infty}^{t_0} f(t) dt$$
(1)

gdzie: T_{sr} – średnia arytmetyczna, σ – odchylenie standardowe, $t = \frac{T - T_{se}}{\sigma}$ – zmienna standaryzowana n – długość serii pomiarowej:

Rys. 1. Histogram (A) i dystrybuanta (B) temperatury powietrza (T) w zimie w Warszawie (1779-2017) **Fig. 1**. The histograms (A) and cumulative distribution (B) of air temperature) in winter in Warsaw (1779-2017)

Rozkład prawdopodobieństwa (%) wystąpienia temperatury powietrza (*T*) w zimie w Warszawie (1779-2017) w przedziale T_{sr} - 4 $\sigma \leq T \leq T_{sr}$ + 4 σ wynosi:

	-4 σ – -3 σ	-3 σ – -2 σ	-2 σ – -1 σ	-1 σ–0	0 -1 σ	1 σ–2 σ	2 σ-3 σ	$3 \sigma - 4 \sigma$
Emp. %	0,00	4,62	11,76	28,99	39,92	13,86	0,84	0,00
Norm. %	0,13	2,14	13,59	34,13	34,13	13,59	2,14	0,13

O zbliżonych dystrybuantach empirycznej $\frac{m}{n}$ i normalnej F(t) (rys. 1) świadczy także test Kołmogorowa:

$$D_n = max \left| \frac{m}{n} - F(t) \right| \tag{3}$$

gdzie: m – numer w szeregu rosnącym t_1, \ldots, t_n .

Wartość $y = \sqrt{n} D_n = 0,8993$ (n = 238, $D_n = 0,0583$) jest mniejsza od krytycznej $y < y_k = 1,40$ na poziomie istotności $\alpha = 0,02$; $K(y_k) = 1-2\alpha = 0,960318$ (Zieliński, 1972). Za wyjątkowe pod względem termicznym uznano te miesiące, pory roku, lata, w których średnia temperatura (T) różni się od średniej wieloletniej (T_{sr}) co najmniej o 2 odchylenia standardowe (σ): $T_{inf} \le T_{sr}-2\sigma$, $T_{sup} \ge T_{sr}+2\sigma$.

Zdefiniowano skrajne przypadki miesiąca, zimy, lata i roku, przyjmując kryteria:

$T_{\rm inf} \leq T { m sr}$ -2 σ	$T_{ m sup} \geq T_{ m sr}$ +2 σ
Bardzo zimny miesiąc (BZ).	Bardzo ciepły miesiąc (BC)
Bardzo zimny rok (BZ)	Bardzo ciepły rok (BC)
Bardzo mroźna zima (BMZ),	Bardzo ciepła zima (BCZ),
Bardzo zimne lato (BZL)	Bardzo gorące lato (BGL))

W Warszawie bardzo mroźne zimy (BMZ) o temperaturze $T_{inf} \leq -7,18$ °C wystąpiły w latach:

	1830	1940	1799	1838	1789	1871	1929	1963	1947	1841	1805
	-9,20	-8,83	-8,60	-8,57	-8,30	-8,13	-7,67	-7,67	-7,50	-7,43	-7,23
a bardzo gorace lata (BGL) o temperaturze $T_{sun} \ge 20.079$ °C – w latach											

1784	2015	1939	1992	1781	1811
20,20	20,27	20,60	20,60	20,70	21,60

Wyodrębniono też przypadki bardzo zimnego roku (BZ) o temperaturze $T_{inf} \le 5,799$ °C i bardzo ciepłego roku (BC) o temperaturze $T_{sup} \ge 9,816$ °C

	BZ							BC	
1829	1799	1785	1805	1871	1838	1803	1989	2014	2015
4,74	`5,21	5,28	5,32	5,37	5,75	5,75	9,82	9,83	10,31

Należy zaznaczyć, że w publikacji *Zmienność warunków termiczno-opadowych w Polsce* ... (Przybylak i in., 2004) obliczono średnie temperatury zimy i lata oraz ich odchylenia standardowe (σ) dla okresu 1901-1960. Wyznaczono zakresy temperatury, które odpowiadają poszczególnym siedmiu indeksom: skrajnie ciepła zima (+3), bardzo ciepła (+2), ciepła (+1), normalna (0),mroźna(-1), bardzo mroźna, surowa (-2),skrajnie mroźna , b. surowa (-3).

W artykułach Fale niezwykłych upałów w Europie na początku XXI wieku (Twardosz., 2009), Niezwykłe anomalie termiczne w strefie klimatu podbiegunowego ... (Twardosz, Kossowska-Cezak, 2013), Niezwykle chłodne sezony letnie w Europie Środkowej i Wschodniej (1951-2010) (Kossowska-Cezak, Twardosz, 2013) określono zakres zmian temperatury powietrza.

W monografii *.Anomalie termiczne w Europie (1951-2010)* (Kossowska-Cezak, Twardosz, (2017) określono niezwykle zimne i ciepłe miesiące, pory roku i rok na obszarze Europy w 60-leciu 1951-2010, na podstawie danych (średnich miesięcznych wartości, °C) z 210 stacji meteorologicznych – o szerokości geograficznej φ (35°N -75°N) i długości λ (5°W-40°E). Za anomalne pod względem termicznym uznano te w których średnia temperatura powietrza na danej stacji różni się od odpowiedniej średniej wieloletniej przynajmniej o 2 odchylenia standardowe: $t \le t_{śr.}$ -2 σ – niezwykle zimne (NZ), $t \ge t_{śr.}$ +2 σ – niezwykle ciepłe (NC).

2.1. Ekstrema temperatury powietrza w Warszawie w latach 1779-2017

Ekstrema temperatury powietrza (największe ochłodzenia i ocieplenia) w Warszawie w wieloleciu 1779-2017 określono na podstawie wyników pomiarów w latach 1779-2017 (Obserwatorium Astronomiczne 1779-1998, Okęcie 1999-2017) (tab. 1, tab. 1a, rys. 1a-17a, 1b-17b.).

Tabela 1. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza w Warszawie w latach 1779-2017

Table 1. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Warsaw in years 1779-2017

	T _{sr} ^o C	σ	$T_{inf} \leq T_{sr.}-2\sigma$	$T_{\rm sup} \ge T_{\rm sr.} + 2\sigma$
Ι	-3,481	3,46000	-10,40075	3,439246
II	-2,180	3,28129	-8,74232	4,382835
III	1,494	2,63243	-3,77062	6,759117
IV	7,719	1,96853	3,78218	11,65629
V	13,580	1,84527	9,88987	17,27094
VI	17,107	1,45493	14,19741	20,01712
VII	18,822	1,47578	15,87035	21,77345
VIII	17,935	1,53577	14,86353	21,00662
IX	13,574	1,43067	10,71271	16,43541
Х	8,147	1,72085	4,70552	11,58893
XI	2,544	2,08414	-1,62393	6,712632
XII	-1,586	3,07694	-7,74007	4,567684
III-V	7,598	1,47970	4,63857	10,55736
VI-VIII	17,955	1,06240	15,82994	20,07956
IX-XI	8,088	1,13180	5,82489	10,35211
XII-II	-2,425	2,37767	-7,18055	2,330122
I-XII	7,807	1,00421	5,79883	9,815672

Tabela 1a. Najchłodniejsze (t_{inf}, T_{inf}) i najcieplejsze (t_{sup}, T_{sup}) zimy, lata i rok w Warszawie (1779-2017) **Table 1a.** The frosty (t_{inf}, T_{inf}) and hot (t_{inf}, T_{inf}) winters, summers, and years in Warsaw (1779-2017)

	Zima				Lato			Rok			
$T_{\rm inf} \leq -7,18$		$T_{\rm sup} \ge 2,33$		$T_{\rm inf} \leq 15,83$		$T_{ m sup} \ge 20$	$T_{ m sup} \ge 20,079$,799	$T_{\rm sup} \ge 9,816$	
1830	-9,20	1990	2,7	1913	15,47	1784	20,20	1829	4,74	1989	9,82
1940	-8,83	1989	2,4	1832	15,57	2015	20,27	1799	5,21	2014	9,83
1799	-8,60			1923	15,57	1939	20,60	1785	5,28	2015	10,31
1838	-8,57			1844	15,70	1992	20,60	1805	5,32		
1789	-8,30			1907	15,77	1781	20,70	1871	5,37		
1871	-8,13					1811	21,60	1838	5,75		
1929	-7,67							1803	5,75		
1963	-7,67										
1947	-7,50										
1841	-7,43										
1805	-7,23										

11

STYCZEŃ (I)

Rys. 1a. Zmiany temperatury powietrza w Warszawie w styczniu w latach 1779-2017 **Fig. 1a.** Changes of air temperature in Warsaw in January in the 1779-2017 years

Rys. 1b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w styczniu w latach 1779-2017 **Fig. 1b.** Extreme values of average air temperature in Warsaw in January in the 1779-2017 years

LUTY (II)

Rys. 2a. Zmiany temperatury powietrza w Warszawie w lutym w latach 1779-2015 **Fig. 2a.** Changes of air temperature in Warsaw in February in the 1779-2015 years

Rys. 2b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w lutym w latach 1779-2017 **Fig. 2b.** Extreme values of average air temperature in Warsaw in February in the 1779-2017 years

Rys. 3a. Zmiany temperatury powietrza w Warszawie w marcu w latach 1779-2017 **Fig. 3a.** Changes of air temperature in Warsaw in March in the 1779-2017 years

Rys. 3b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w marcu w latach 1779-2017 **Fig. 3b.** Extreme values of average air temperature in Warsaw in March in the 1779-2017 years

Rys. 4a. Zmiany temperatury powietrza w Warszawie w kwietniu w latach 1779-2017 **Fig. 4a.** Changes of air temperature in Warsaw in April in the 1779-2017 years

Rys. 4b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w kwietniu w latach 1779-2017 **Fig. 4b.** Extreme values of average air temperature in Warsaw in April in the 1779-2017 years

Rys. 5a. Zmiany temperatury powietrza w Warszawie w maju w latach 1779-2017 **Fig. 5a.** Changes of air temperature in Warsaw in May in the 1779-2017 years

Rys. 5b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w maju w latach 1779-2017 **Fig. 5b.** Extreme values of average air temperature in Warsaw in May in the 1779-2017 years

Rys. 6a. Zmiany temperatury powietrza w Warszawie w czerwcu w latach 1779-2017 **Fig. 6a.** Changes of air temperature in Warsaw in June in the 1779-2017 years

Rys. 6b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w czerwcu w latach 1779-2017 **Fig. 6b.** Extreme values of average air temperature in Warsaw in June in the 1779-2017 years

LIPIEC (VII)

Rys. 7a. Zmiany temperatury powietrza w Warszawie w lipcu w latach 1779-2017 **Fig. 7a.** Changes of air temperature in Warsaw in July in the 1779-2017 years

Rys. 7b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w lipcu w latach 1779-2017 **Fig. 7b.** Extreme values of average air temperature in Warsaw in July in the 1779-2017 years

SIERPIEŃ (VIII)

Rys. 8a. Zmiany temperatury powietrza w Warszawie w sierpniu w latach 1779-2017 **Fig. 8a.** Changes of air temperature in Warsaw in August n the 1779-2017 years

Rys. 8b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w sierpniu w latach 1779-2017 **Fig. 8b.** Extreme values of average air temperature in Warsaw in August in the 1779-2017 years

WRZESIEŃ (IX)

Rys. 9a. Zmiany temperatury powietrza w Warszawie we wrześniu w latach 1779-2017 **Fig. 9a.** Changes of air temperature in Warsaw in September in the 1779-2017 years

Rys. 9b. Ekstremalne wartości średniej temperatury powietrza w Warszawie we wrześniu w latach 1779-2017 **Fig. 9b.** Extreme values of average air temperature in Warsaw in September in the 1779-2017 years

PAŹDZIERNIK (X)

Rys. 10a. Zmiany temperatury powietrza w Warszawie w październiku w latach 1779-2017 **Fig. 10a.** Changes of air temperature in Warsaw in October in the 1779-2017 years

Rys. 10b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w październiku w latach 1779-2017

Fig. 10b. Extreme values of average air temperature in Warsaw in October in the 1779-2017 years

LISTOPAD (XI)

Rys. 11a. Zmiany temperatury powietrza w Warszawie w listopadzie w latach 1779-2017 **Fig. 11a.** Changes of air temperature in Warsaw in November in the 1779-2017 years

Rys. 11b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w listopadzie w latach 1779-2017 **Fig. 11b.** Extreme values of average air temperature in Warsaw in November in the 1779-2017 years

Rys. 12a. Zmiany temperatury powietrza w Warszawie w grudniu w latach 1779-2017 **Fig. 12a.** Changes of air temperature in Warsaw in December in the 1779-2017 years

Rys. 12b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w grudniu w latach 1779-2017 **Fig. 12b.** Extreme values of average air temperature in Warsaw in December in the 1779-2017 years.

Rys. 13a. Zmiany temperatury powietrza w Warszawie wiosną w latach 1779-2017 **Fig. 13a.** Changes of air temperature in Warsaw in spring in the 1779-2017 years

Rys. 13b. Ekstremalne wartości średniej temperatury powietrza w Warszawie wiosną w latach 1779-2017 **Fig. 13b.** Extreme values of average air temperature in Warsaw in Spring in the 1779-2017 years.

Rys. 14a. Zmiany temperatury powietrza w Warszawie w lecie w latach 1779-2017 **Fig. 14a.** Changes of air temperature in Warsaw in summer in the 1779-2017 years

Rys. 14b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w lecie w latach 1779-2017 **Fig. 14b.** Extreme values of average air temperature in Warsaw in Summer in the 1779-2017 years.

Rys. 15a. Zmiany temperatury powietrza w Warszawie jesienią w latach 1779-2017 **Fig. 15a.** Changes of air temperature in Warsaw in Autumn in the 1779-2017 years

Rys. 15b. Ekstremalne wartości średniej temperatury powietrza w Warszawie jesienią w latach 1779-2017 **Fig. 15b.** Extreme values of average air temperature in Warsaw in Autumn in the 1779-2017 years.

Rys. 16a. Zmiany temperatury powietrza w Warszawie w zimie w latach 1779-2017 **Fig. 16a.** Changes of air temperature in Warsaw in Winter in the 1779-2017 years

Rys. 16b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w zimie w latach 1779-2017 **Fig. 16b.** Extreme values of average air temperature in Warsaw in Winter in the 1779-2017 years.

Rys. 17a. Zmiany temperatury powietrza w Warszawie w roku w latach 1779-2017 **Fig. 17a.** Changes of air temperature in Warsaw in year in the 1779-2017 years

Rys. 17b. Ekstremalne wartości średniej temperatury powietrza w Warszawie w roku w latach 1779-2017 **Fig. 17b.** Extreme values of average air temperature in Warsaw in year in the 1779-2017 years.

2.2. Ekstrema temperatury powietrza w Krakowie w latach 1826-2017

Ekstrema temperatury powietrza (lokalne minima i maksima) w Krakowie określono na podstawie wyników pomiarów w latach 1826-2017.

O anomaliach termicznych (ochłodzeniach i ociepleniach klimatu) informują daty wieloletnich minimów (t_{inf} , T_{inf}) i maksimów (t_{sup} , T_{sup}) temperatury powietrza.

Za wyjątkowe pod względem termicznym uznano te miesiące, pory roku i rok w których średnia temperatura (*T*) różni się od średniej wieloletniej (T_{sr}) co najmniej o 2 odchylenia standardowe (σ): $T_{inf} \leq T_{sr}$ -2 σ , $T_{sup} \geq T_{sr}$ +2 σ (tab. 2, tab. 2a, rys. 18a-34a, rys. 18b-34b).

Tabela 2. Średnie arytmetyczne ($T_{\rm sr}$) i odchylenia standardowe (σ) temperatury powietrza w Krakowie w latach 1826-2017

Table 2. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Krakow in years 1826-2017

	T _{sr} ^o C	σ	$T_{\rm inf} \leq T_{\rm sr.}$ -2 σ	$T_{\sup} \ge T_{\text{sr}} + 2\sigma$
Ι	-3,241	3,30836	-9,85772	3,37572
II	-1,403	3,50364	-8,41028	5,60428
III	2,420	2,46634	-2,51268	7,35268
IV	8,120	1,78341	4,55318	11,68682
V	13,505	1,69789	10,10922	16,90078
VI	16,876	1,35595	14,1641	19,58790
VII	18,479	1,33780	15,8034	21,15460
VIII	17,660	1,28465	15,0907	20,22930
IX	13,706	1,41466	10,87668	16,53532
Х	8,575	1,68779	5,19942	11,95058
XI	2,880	2,09390	-1,3078	7,06780
XII	-1,290	2,89441	-7,07882	4,49882
III-V	8,015	1,29023	5,43454	10,59546
VI-VIII	17,672	0,92316	15,82568	19,51832
IX-XI	8,387	1,07539	6,23622	10,53778
XII-II	-1,976	2,24314	-6,46228	2,51028
I-XII	8,024	0,87326	6,27748	9,77052

Tabela 2a. Najchłodniejsze (t_{inf} , T_{inf}) i najcieplejsze (t_{sup} , T_{sup}) zimy, lata i rok w Krakowie (1826-2017) **Table 2a.** The frosty (t_{inf} , T_{inf}) and hot (t_{inf} , T_{inf}) winters, summers, and years in Krakow (1826-2017)

1		Zima				Lato			Rok			
$T_{\rm inf} \le -6,46$		-6,46	$T_{\rm sup} \ge 2,51$		$T_{\rm inf} \le 15,83$		$T_{\rm sup} \ge 19,52$		$T_{\rm inf} \leq 6,28$		$T_{\rm sup} \ge 9,77$	
	1830	-10,30	1870	2,67	1978	15,40	1992	19,93	1829	5,33	2014	9,99
	1963	-8,03			1965	15,70	2015	19,97	1871	5,71	1934	10,00
	1940	-7,43			1984	15,73	1834	20,77	1838	5,93		
	1871	-7,20							1956	5,98		
	1838	-7,17							1840	6,13		
	1841	-7,17							1858	6,21		
	1947	-6,93							1864	6,21		
									1940	6,25		

W Krakowie w latach 1826-2017 bardzo mroźne zimy o temperaturze $T \le -6,46$ °C (BMZ) wystąpiły w latach :

1830 1963 1940 1871 1838 1841 1947 -10,30 -8,03 -7,43 -7,20 -7,17 -7,17 -6,93 a bardzo gorące lata (BGL) o temperaturze $T \ge 19,52\ ^{\rm o}{\rm C}$ – w latach:

1992	2015	1834
19,93	19,97	20,77

STYCZEŃ (I)

Rys. 18a. Zmiany temperatury powietrza w Krakowie w styczniu w latach 1826-2017 **Fig. 18a.** Changes of air temperature in Cracow in January in the 1826-2017 years

Rys. 18b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w styczniu w latach 1826-2017 **Fig. 18b.** Extreme values of average air temperature in Cracow in January in the 1826-2017 years

LUTY (II)

Rys. 19a. Zmiany temperatury powietrza w Krakowie w lutym w latach 1826-2017 **Fig. 19a.** Changes of air temperature in Cracow in February in the 1826-2017 years

Rys. 19b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w lutym w latach 1826-2017 **Fig. 19b.** Extreme values of average air temperature in Cracow in February in the 1826-2017 years

MARZEC(III)

Rys. 20a. Zmiany temperatury powietrza w Krakowie w marcu w latach 1826-2017 **Fig. 20a.** Changes of air temperature in Cracow in March in the 1826-2017 years

Rys. 20b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w marcu w latach 1826-2017 **Fig. 20b.** Extreme values of average air temperature in Cracow in March in the 1826-2017 years

KWIECIEŃ (IV)

Rys. 21a. Zmiany temperatury powietrza w Krakowie w kwietniu w latach 1826-2017 **Fig. 21a.** Changes of air temperature in Cracow in April in the 1826-2017 years

Rys. 21b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w kwietniu w latach 1826-2017 **Fig. 21b.** Extreme values of average air temperature in Cracow in April in the 1826-2017 years

Rys. 22a. Zmiany temperatury powietrza w Krakowie w maju w latach 1826-2017 **Fig. 22a.** Changes of air temperature in Cracow in May in the 1826-2017 years

Rys. 22b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w maju w latach 1826-2017 **Fig. 22b.** Extreme values of average air temperature in Cracow in May in the 1826-2017 years
CZERWIEC (VI)

Rys. 23a. Zmiany temperatury powietrza w Krakowie w czerwcu w latach 1826-2017 **Fig. 23a.** Changes of air temperature in Cracow in June in the 1826-2017 years

Rys. 23b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w czerwcu w latach 1826-2017 **Fig. 23b.** Extreme values of average air temperature in Cracow in June in the 1826-2017 years

LIPIEC (VII)

Rys. 24a. Zmiany temperatury powietrza w Krakowie w lipcu w latach 1826-2017 **Fig. 24a.** Changes of air temperature in Cracow in July in the 1826-2017 years

Rys. 24b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w lipcu w latach 1826-2017Fig. 24b. Extreme values of average air temperature in Cracow in July in the 1826-2017 years

SIERPIEŃ (VIII)

Rys. 25a. Zmiany temperatury powietrza w Krakowie w sierpniu w latach 1826-2017 **Fig. 25a.** Changes of air temperature in Cracow in August n the 1826-2017 years

Rys. 25b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w sierpniu w latach 1826-2017 **Fig. 25b.** Extreme values of average air temperature in Cracow in August in the 1826-2017 years

WRZESIEŃ (IX)

Rys. 26a. Zmiany temperatury powietrza w Krakowie we wrześniu w latach 1826-2017 **Fig. 26a.** Changes of air temperature in Cracow in September in the 1826-2017 years

Rys. 26b. Ekstremalne wartości średniej temperatury powietrza w Krakowie we wrześniu w latach 1826-2017 **Fig. 26b.** Extreme values of average air temperature in Cracow in September in the 1826-2017 years

PAŹDZIERNIK (VIII)

Rys. 27a. Zmiany temperatury powietrza w Krakowie w październiku w latach 1826-2017 **Fig. 27a.** Changes of air temperature in Cracow in October in the 1826-2017 years

Rys. 27b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w październiku w latach 1826-2017

Fig. 27b. Extreme values of average air temperature in Cracow in October in the 1826-2017 years

Rys. 28a. Zmiany temperatury powietrza w Krakowie w listopadzie w latach 1826-2017 **Fig. 28a.** Changes of air temperature in Cracow in November in the 1826-2017 years

Rys. 28b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w listopadzie w latach 1826-2017 **Fig. 28b.** Extreme values of average air temperature in Cracow in Novemberr in the 1826-2017 years .

Rys. 29a. Zmiany temperatury powietrza w Krakowie w grudniu w latach 1826-2017 **Fig. 29a.** Changes of air temperature in Cracow in December in the 1826-2017 years

Rys. 29b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w grudniu w latach 1826-2017 **Fig. 29b.** Extreme values of average air temperature in Cracow in December in the 1826-2017 years.

Rys. 30a. Zmiany temperatury powietrza w Krakowie wiosną w latach 1826-2017 **Fig. 30a.** Changes of air temperature in Cracow in spring in the 1826-2017 years

Rys. 30b. Ekstremalne wartości średniej temperatury powietrza w Krakowie wiosną w latach 1826-2017 **Fig. 30b.** Extreme values of average air temperature in Cracow in Spring in the 1826-2017 years.

Rys. 31a. Zmiany temperatury powietrza w Krakowie w lecie w latach 1826-2017 **Fig. 31a.** Changes of air temperature in Cracow in summer in the 1826-2017 years

Rys. 31b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w lecie w latach 1826-2017 **Fig. 31b.** Extreme values of average air temperature in Cracow in Summer in the 1826-2017 years.

JESIEŃ (IX-XI)

Rys. 32a. Zmiany temperatury powietrza w Krakowie jesienią w latach 1826-2017 **Fig. 32a.** Changes of air temperature in Cracow in Autumn in the 1826-2017 years

Rys. 32b. Ekstremalne wartości średniej temperatury powietrza w Krakowie jesienią w latach 1826-2017 **Fig. 32b.** Extreme values of average air temperature in Cracow in Autumn in the 1826-2017 years.

ZIMA (XII-II)

Rys. 33a. Zmiany temperatury powietrza w Krakowie w zimie w latach 1826-2017 **Fig. 33a.** Changes of air temperature in Cracow in Winter in the 1826-2017 years

Rys. 33b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w zimie w latach 1826-2017 **Fig. 33b.** Extreme values of average air temperature in Cracow in Winter in the 1826-2017 years.

ROK (I-XII)

Rys. 34a. Zmiany temperatury powietrza w Krakowie w roku w latach 1826-2017 **Fig. 34a.** Changes of air temperature in Cracow in year in the 1826-2017 years

Rys. 34b. Ekstremalne wartości średniej temperatury powietrza w Krakowie w roku w latach 1826-2017 **Fig. 34b.** Extreme values of average air temperature in Cracow in year in the 1826-2017 years.

2.3. Ekstrema temperatury powietrza we Wrocławiu w latach 1792-2017

Ekstrema temperatury powietrza (lokalne minima i maksima) we Wrocławiu określono na podstawie wyników pomiarów w latach 1792-2017. O anomaliach termicznych (największych ochłodzeniach i ociepleniach klimatu) informują daty wieloletnich minimów (t_{inf} , T_{inf}) i maksimów (t_{sup} , T_{sup}) temperatury powietrza.

Za wyjątkowe pod względem termicznym uznano te miesiące, pory roku, lata, w których średnia temperatura (*T*) różni się od średniej wieloletniej (T_{sr}) co najmniej o 2 odchylenia standardowe (σ): $T_{\text{inf}} \leq T_{\text{sr}}$ -2 σ , $T_{\text{sup}} \geq T_{\text{sr}}$ +2 σ (tab. 3, tab. 3a, rys 35a-51a, rys. 35b-51b).

Tabela 3. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza we Wrocławiu w latach 1792-2017

Table 3. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Wroclaw in years 1792-2017

	$T_{\rm sr}$ °C	σ	$T_{\rm inf} \leq T_{\rm sr.}$ -2 σ	$T_{\rm sup} \ge T_{ m sr.} + 2\sigma$
Ι	-1,937	3,52171	-8,98015	5,10669
II	-0,549	3,34048	-7,23025	6,13167
III	2,828	2,53697	-2,24625	7,90165
IV	8,153	1,95153	4,25034	12,05648
V	13,412	1,78282	9,84639	16,97768
VI	16,800	1,50651	13,78706	19,81312
VII	18,475	1,51699	15,44133	21,50929
VIII	17,851	1,53254	14,78588	20,91606
IX	14,012	1,50586	11,00076	17,02419
Х	8,961	1,77429	5,41195	12,50911
XI	3,588	2,11921	-0,65046	7,82639
XII	-0,075	2,94462	-5,96429	5,81420
III-V	8,131	1,48822	5,15460	11,10744
VI-VIII	17,707	1,10430	15,49840	19,91560
IX-XI	8,842	1,25110	6,33980	11,34420
XII-II	-0,851	2,38740	-5,62580	3,92380
I-XII	8,453	1,12915	6,19510	10,71170

Tabela 3a. Najchłodniejsze (t_{inf} , T_{inf}) i najcieplejsze (t_{sup} , T_{sup}) zimy, lata i rok we Wrocławiu (1792-2017) **Table 3a.** The frosty (t_{inf} , T_{inf}) and hot((t_{sup} , T_{sup}) winters, summers, and years in Wrocław (1792-2017)

Zima					Lato	Rok					
$T_{inf} \leq$	-5,63	$T_{sup} \ge$	3,92	$T_{inf} \le$	15,50	T_{sup}	≥ 19,92	$T_{inf} \le$	6,20	$T_{sup} \ge$: 10,71
1830	-10,30	2007	4,37	1825	14,20	2006	20,04	1829	4,22	2007	10,75
1799	-7,77			1821	15,37	2002	20,17	1826	5,01	2008	10,78
1929	-6,99			1795	15,47	1834	20,23	1799	5,56	2000	10,92
1940	-6,99					2003	20,31			2015	10,94
1947	-6,59					2015	20,43			2014	10,99
1963	-6,59					1992	20,87				
1827	-6,50										
1838	-6,07										
1871	-5,93										

We Wrocławiu w latach 1792-2017 bardzo mroźne zimy (BMZ) o temperaturze $T \le -5,63$ °C wystąpiły w latach:

1830 1799 1929 1940 1947 1963 1827 1838 1871 -10,30 -7,77 -6,99 -6,99 -6,59 -6,59 -6,5 -6,07 -5,93 a bardzo gorące lata (BGL) o temperaturze $T \ge 19,92$ °C – w latach:

2006	2002	1834	2003	2015	1992
20,04	20,17	20,23	20,31	20,43	20,87

STYCZEŃ (I)

Rys. 35a. Zmiany temperatury powietrza we Wrocławiu w styczniu w latach 1792-2017 **Fig. 35a.** Changes of air temperature in Wrocław in January in the 1792-2017 years

Rys. 35b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w styczniu w latach 1792-2017

Fig. 35b. Extreme values of average air temperature in Wroclaw in January in the 1792-2017 years

LUTY (II)

Rys. 36a. Zmiany temperatury powietrza we Wrocławiu w lutym w latach 1792-2017 **Fig. 36a.** Changes of air temperature in Wrocław in February in the 1792-2017 years

Rys. 36b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w lutym w latach 1792-2017 **Fig. 36b.** Extreme values of average air temperature in Wrocław in February in the 1792-2017 years

MARZEC(III)

Rys. 37a. Zmiany temperatury powietrza we Wrocławiu w marcu w latach 1792-2017 **Fig. 37a.** Changes of air temperature in Wroclaw in March in the 1792-2017 years

Fig. 37b. Extreme values of average air temperature in Wroclaw in March in the 1792-2017 years

Rys. 38a. Zmiany temperatury powietrza we Wrocławiu w kwietniu w latach 1792-2017 **Fig. 38a.** Changes of air temperature in Wrocław in April in the 1792-2017 years

Rys. 38b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w kwietniu w latach 1792-2017

Fig. 38b. Extreme values of average air temperature in Wroclaw in April in the 1792-2017 years

MAJ (V)

Rys. 39a. Zmiany temperatury powietrza we Wrocławiu w maju w latach 1792-2017 **Fig. 39a.** Changes of air temperature in Wroclaw in May in the 1792-2017 years

Rys. 39b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w maju w latach 1792-2017 **Fig. 39b.** Extreme values of average air temperature in Wrocław in May in the 1792-2017 years

CZERWIEC (VI)

Rys. 40a. Zmiany temperatury powietrza we Wrocławiu w czerwcu w latach 1792-2017 **Fig. 40a.** Changes of air temperature in Wroclaw in June in the 1792-2017 years

Rys. 40b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w czerwcu w latach 1792-2017Fig. 40b. Extreme values of average air temperature in Wrocław in June in the 1792-2017 years

LIPIEC (VII)

Rys. 41a. Zmiany temperatury powietrza we Wrocławiu w lipcu w latach 1792-2017 **Fig. 41a.** Changes of air temperature in Wroclaw in July in the 1792-2017 years

Rys. 41b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w lipcu w latach 1792-2017 **Fig. 41b.** Extreme values of average air temperature in Wrocław in July in the 1792-2017 years

SIERPIEŃ (VIII)

Rys. 42a. Zmiany temperatury powietrza we Wrocławiu w sierpniu w latach 1792-2017 **Fig. 42a.** Changes of air temperature in Wroclaw in August n the 1792-2017 years

Fig. 42b. Extreme values of average air temperature in Wroclaw in August in the 1792-2017 years

WRZESIEŃ (IX)

Rys. 43a. Zmiany temperatury powietrza we Wrocławiu we wrześniu w latach 1792-2017 **Fig. 43a.** Changes of air temperature in Wroclaw in September in the 1792-2017 years

Rys. 43b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu we wrześniu w latach 1792-2017

Fig. 43b. Extreme values of average air temperature in Wroclaw in September in the 1792-2017 years

PAŹDZIERNIK (VIII)

Rys. 44a. Zmiany temperatury powietrza we Wrocławiu w październiku w latach 1792-2017 **Fig. 44a.** Changes of air temperature in Wroclaw in October in the 1792-2017 years

Rys. 44b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w październiku w latach 1792-2017

Fig. 44b. Extreme values of average air temperature in Wroclaw in October in the 1792-2017 years

Rys. 45a. Zmiany temperatury powietrza we Wrocławiu w listopadzie w latach 1792-2017 **Fig. 45a.** Changes of air temperature in Wroclaw in November in the 1792-2017 years

Rys. 45b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w listopadzie w latach 1792-2017 **Fig. 45b.** Extreme values of average air temperature in Wrocław in November in the 1792-2017 years

GRUDZIEŃ (XII)

Rys. 46a. Zmiany temperatury powietrza we Wrocławiu w grudniu w latach 1792-2017 **Fig. 46a.** Changes of air temperature in Wroclaw in December in the 1792-2017 years

Rys. 46b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w grudniu w latach 1792-2017

Fig. 46b. Extreme values of average air temperature in Wroclaw in December in the 1792-2017 years.

WIOSNA (III-V)

Rys. 47a. Zmiany temperatury powietrza we Wrocławiu wiosną w latach 1792-2017 **Fig. 47a.** Changes of air temperature in Wroclaw in spring in the 1792-2017 years

Rys. 47b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu wiosną w latach 1792-2017 **Fig. 47b.** Extreme values of average air temperature in Wrocław in Spring in the 1792-2017 years.

LATO (VI-VIII)

Rys. 48a. Zmiany temperatury powietrza we Wrocławiu w lecie w latach 1792-2017 **Fig. 48a.** Changes of air temperature in Wroclaw in summer in the 1792-2017 years

Rys. 48b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w lecie w latach 1792-2017 **Fig. 48b.** Extreme values of average air temperature in Wrocław in Summer in the 1792-2017 years.

Rys. 49a. Zmiany temperatury powietrza we Wrocławiu jesienią w latach 1792-2017 **Fig. 49a.** Changes of air temperature in Wroclaw in Autumn in the 1792-2017 years

Rys. 49b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu jesienią w latach 1792-2017 **Fig. 49b.** Extreme values of average air temperature in Wrocław in Autumn in the 1792-2017 years.

ZIMA (XII-II)

Rys. 50a. Zmiany temperatury powietrza we Wrocławiu w zimie w latach 1792-2017 **Fig. 50a.** Changes of air temperature in Wroclaw in Winter in the 1792-2017 years

Rys. 50b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w zimie w latach 1792-2017 **Fig. 50b.** Extreme values of average air temperature in Wrocław in Winter in the 1792-2017 years.

ROK (I-XII)

Rys. 51a. Zmiany temperatury powietrza we Wrocławiu w roku w latach 1792-2017 **Fig. 51a.** Changes of air temperature in Wrocław in year in the 1792-2017 years

Rys. 51b. Ekstremalne wartości średniej temperatury powietrza we Wrocławiu w roku w latach 1792-2017 **Fig. 51b.** Extreme values of average air temperature in Wrocław in year in the 1792-2017 years

III. ANOMALIE TEMPERATURY POWIETRZA W EUROPIE W MIASTACH W PROFILU POŁUDNIKOWYM (XVIII-XXI)

O anomaliach termicznych (największych ochłodzeniach i ociepleniach klimatu) informują daty wieloletnich minimów (t_{inf} , T_{inf}) i maksimów (t_{sup} , T_{sup}) temperatury powietrza

Ekstrema temperatury powietrza (lokalne minima i maksima) w Europie w profilu południkowym określono na podstawie wyników pomiarów w trzech miastach: w Paryżu, Berlinie i Moskwie o szerokości geograficznej φ , długości λ i wysokości nad poziomem morza *H*:

•	Okres	φ	λ	Н
Paryż Berlin Moskwa	1757-2011 1769-2017 1780-2017	48°58'N 52°28'N 55°50'N	2°27'E 13°18'E 37°37'E	65 m 58 m

Porównano histogram i dystrybuantę empiryczną średnich wartości temperatury powietrza (*T*) w zimie w Paryżu (1751-2011) z rozkładem normalnym f(t) i dystrybuantą rozkładu normalnego $F(t_0)$ (rys. 1).

$$f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} \quad , \qquad F(t_0) = \int_{-\infty}^{t_0} f(t) \, dt \tag{1}$$

gdzie: T_{sr} – średnia arytmetyczna, σ – odchylenie standardowe, $t = \frac{T - T_{se}}{\sigma}$ – zmienna standaryzowana, n – długość serii pomiarowej:

$$T_{sr} = \frac{1}{n} \sum_{i=1}^{n} T_{i} \qquad , \qquad \sigma = \left(\frac{1}{n} \sum_{i=1}^{n} (T_{i} - T_{sr})^{2} \right)^{0.5}$$
(2)

Rys. 1. Histogram (A) i dystrybuanta (B) temperatury powietrza (T) w zimie w Paryżu (1757-2011) **Fig. 1**. The histograms (A) and cumulative distribution (B) of air temperature) in winter in Paris (1757-2011)

Prawdopodobieństwo (%) wystąpienia temperatury powietrza w zimie w Paryżu (według danych z lat 1757-2011), w przedziale T_{sr} - 4 $\sigma \le T \le T_{sr}$ + 4 σ wynosi:

	-4 σ – -3 σ	-3 σ – -2 σ	-2 σ – -1 σ	-1 σ–0	$0 - 1 \sigma$	1 σ–2 σ	2 σ-3 σ	$3 \sigma - 4 \sigma$
Emp. %	0,00	1,90	13,78	30,30	39,70	8,60	1,18	0,00
Norm.%	0,13	2,14	13,59	34,13	34,13	13,59	2,14	0,13

Za wyjątkowe pod względem termicznym uznano te miesiące, pory roku, lata, w których średnia temperatura (*T*) różni się od średniej wieloletniej (T_{sr}) co najmniej mniej o 2 odchylenia standardowe (σ): $T_{inf} \leq T_{sr}$ -2 σ , $T_{sup} \geq T_{sr}$ +2 σ :

$T_{ m inf} \leq T m sr$ -2 σ	$T_{ m sup} \ge T_{ m sr}$ +2 σ
Bardzo zimny miesiąc (BZ).	Bardzo ciepły miesiąc (BC)
Bardzo zimny rok (BZ)	Bardzo ciepły rok (BC)
Bardzo mroźna zima (BMZ),	Bardzo ciepła zima (BCZ),
Bardzo zimne lato (BZL)	Bardzo gorące lato (BGL))

W Paryżu bardzo mroźne zimy (BMZ) o temperaturze $T_{inf} \le 0.251$ °C i bardzo ciepłe zimy (BCZ) o temperaturze $T \ge 6.88$ °C wystąpiły w latach :

BMZ							BCZ		
1830	1880	1963	1795	1784	1891	1789	1975	1995	2007
-1,60	-1,43	-1,13	-0,80	-0,57	-0,53	0,10	6,90	6,90	7,87

Natomiast bardzo gorące lata (BGL) o temperaturze $T_{sup} \ge 20,665^{\circ}$ C i bardzo chłodne lata (BZL) o temperaturze $T_{inf} \le 15,59^{\circ}$ C wystąpiły w latach

BGL								BZL	
1947	1761	1762	2006	1757	1775	2003	1816	1860	
20,7	20,93	20,93	21,03	21,07	21,27	22,6	15,3	15,4	

Wyodrębniono też przypadki bardzo zimnego roku (BZ) o temperaturze $T_{inf} \le 8,887$ °C :

1879	1855	1887	1860
8,17	8,75	8,81	8,92

i bardzo ciepłego roku (BC) o temperaturze $T_{sup} \ge 12,602$ °C:

2008	1775	2009	1997	2005	2000	2002	1999	2006	2007	2003	2011
12,63	12,68	12,82	12,9	12,9	12,93	13,04	13,06	13,13	13,19	13,23	13,91

3.1. Ekstrema temperatury powietrza w Paryżu w latach 1757-2011

Ekstrema temperatury powietrza (największe ochłodzenia i ocieplenia) w Paryżu w wieloleciu 1757-2011 określono na podstawie wyników pomiarów w latach 1757-2011 (tab. 1, tab. 1a, rys 1a-17a, rys. 1b-17b.

Tabela 1. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza w Paryżu w latach 1757-2011

Table 1. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Paris in years 1757-2011

	$T_{\rm sr}$ °C	σ	$T_{\rm sr}$ -2 σ	$T_{\rm sr}$ +2 σ
Ι	2,803	2,63535	-2,46795	8,07344
II	4,247	2,27987	-0,31267	8,80679
III	6,670	1,88756	2,89468	10,44493
IV	10,136	1,65628	6,82391	13,44903
V	13,949	1,65100	10,64742	17,25141
VI	17,035	1,56536	13,90418	20,16562
VII	18,861	1,68686	15,48745	22,23491
VIII	18,479	1,62665	15,22553	21,73212
IX	15,576	1,57047	12,43474	18,71663
Х	11,033	1,61680	7,79934	14,26655
XI	6,500	1,71393	3,07213	9,92787
XII	3,648	2,51729	-1,38635	8,68282
III-V	10,252	1,18306	7,88578	12,61801
VI-VIII	18,125	1,26521	15,59455	20,65538
IX-XI	11,036	1,16811	8,70000	13,37242
XII-II	3,565	1,65728	0,25066	6,87979
I-XII	10,745	0,92857	8,88764	12,60191

Tabela 1a. Najchłodniejsze (t_{inf}, T_{inf}) i najcieplejsze (t_{sup}, T_{sup}) zimy, lata i rok w Paryżu (1757-2011) **Table 1a.** The frosty (t_{inf}, T_{inf}) and hot (t_{inf}, T_{inf}) winters, summers, and years in Paris (1757-2011)

	Zima			Lato				Rok			
$T_{ m inf} \leq$	$T_{\rm inf} \le 0,25$ $T_{\rm sup} \ge 6,88$		5,88	$T_{inf} \leq 1$	$T_{\rm inf} \leq 15,59$		$T_{\rm sup} \ge 20,66$,89	$T_{\rm sup} \ge 12,60$	
1830	-1,60	1975	6,90	1816	15,30	1947	20,70	1879	8,17	2008	12,63
1880	-1,43	1995	6,90	1860	15,40	1761	20,93	1855	8,75	1775	12,68
1963	-1,13	2007	7,87			1762	20,93	1887	8,81	2009	12,82
1795	-0,80					2006	21,03	1860	8,92	1997	12,90
1784	-0,57					1757	21,07			2005	12,90
1891	-0,53					1775	21,27			2000	12,93
1789	0,10					2003	22,60			2002	13,04
										1999	13,06
										2006	13,13
										2007	13,19
										2003	13,23
										2011	13,91

STYCZEŃ (I)

Rys. 1a. Zmiany temperatury powietrza w Paryżu w styczniu w latach 1757-2011 **Fig. 1a**. Changes of air temperature in Paris in January in the 1757-2011 years

Rys. 1b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w styczniu w latach 1757-2011 **Fig. 1b.** Extreme values of average air temperature in Paris in January in the 1757-2011 years

Rys. 2a. Zmiany temperatury powietrza w Paryżu w lutym w latach 1757-2011 **Fig. 2a**. Changes of air temperature in Paris in February in the 1757-2011 years

Rys. 2b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w lutym w latach 1757-2011 **Fig. 2b.** Extreme values of average air temperature in Paris in February in the 1757-2011 years

MARZEC(III)

Rys. 3a. Zmiany temperatury powietrza w Paryżu w marcu w latach 1757-2011 **Fig. 3a**. Changes of air temperature in Paris in March in the 1757-2011 years

Rys. 3b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w marcu w latach 1757-2011 **Fig. 3b**. Extreme values of average air temperature in Paris in March in the 1757-2011 years
KWIECIEŃ (IV)

Rys. 4a. Zmiany temperatury powietrza w Paryżu w kwietniu w latach 1757-2011 **Fig. 4a**. Changes of air temperature in Paris in April in the 1757-2011 years

Rys. 4b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w kwietniu w latach 1757-2011 **Fig. 4b**. Extreme values of average air temperature in Paris in April in the 1757-2011 years

Rys. 5a. Zmiany temperatury powietrza w Paryżu w maju w latach 1757-2011 **Fig. 5a**. Changes of air temperature in Paris in May in the 1757-2011 years

Rys. 5b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w maju w latach 1757-2011 **Fig. 5b.** Extreme values of average air temperature in Paris in May in the 1757-2011 years

CZERWIEC (VI)

Rys. 6a. Zmiany temperatury powietrza w Paryżu w czerwcu w latach 1757-2011 **Fig. 6a.** Changes of air temperature in Paris in June in the 1757-2011 years

Rys. 6b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w czerwcu w latach 1757-2011 **Fig. 6b.** Extreme values of average air temperature in Paris in June in the 1757-2011 years

Rys. 7a. Zmiany temperatury powietrza w Paryżu w lipcu w latach 1757-2011 **Fig. 7a.** Changes of air temperature in Paris in July in the 1757-2011 years

Rys. 7b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w lipcu w latach 1757-2011 **Fig. 7b**. Extreme values of average air temperature in Paris in July in the 1757-2011 years

SIERPIEŃ (VIII)

Rys. 8a. Zmiany temperatury powietrza w Paryżu w sierpniu w latach 1757-2011 **Fig. 8a.** Changes of air temperature in Paris in August n the 1757-2011 years

Rys. 8b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w sierpniu w latach 1757-2011 **Fig. 8b.** Extreme values of average air temperature in Paris in August in the 1757-2011 years

WRZESIEŃ (IX)

Rys. 9a. Zmiany temperatury powietrza w Paryżu we wrześniu w latach 1757-2011 **Fig. 9a.** Changes of air temperature in Paris in September in the 1757-2011 years

Rys. 9b. Ekstremalne wartości średniej temperatury powietrza w Paryżu we wrześniu w latach 1757-2011 **Fig. 9b.** Extreme values of average air temperature in Paris in September in the 1757-2011 years

Rys. 10b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w październiku w latach 1757-2011

Fig. 10b. Extreme values of average air temperature in Paris in October in the 1757-2011 years

LISTOPAD (XI)

Rys. 11b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w listopadzie w latach 1757-2011 **Fig. 11b.** Extreme values of average air temperature in Paris in November in the 1757-2011 years

GRUDZIEŃ (XII)

Rys. 12a. Zmiany temperatury powietrza w Paryżu w grudniu w latach 1757-2011 **Fig. 12a.** Changes of air temperature in Paris in December in the 1757-2011 years

Rys. 12b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w grudniu w latach 1757-2011 **Fig. 12b**. Extreme values of average air temperature in Paris in December in the 1757-2011 years.

Rys. 13a. Zmiany temperatury powietrza w Paryżu wiosną w latach 1757-2011 **Fig. 13a.** Changes of air temperature in Paris in spring in the 1757-2011 years

Rys. 13b. Ekstremalne wartości średniej temperatury powietrza w Paryżu wiosną w latach 1757-2011 **Fig. 13b**. Extreme values of average air temperature in Paris in Spring in the 1757-2011 years.

LATO (VI-VIII)

Rys. 14a. Zmiany temperatury powietrza w Paryżu w lecie w latach 1757-2011 **Fig. 14a.** Changes of air temperature in Paris in summer in the 1757-2011 years

Rys. 14b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w lecie w latach 1757-2011 **Fig. 14b**. Extreme values of average air temperature in Paris in Summer in the 1757-2011 years.

Rys. 15a. Zmiany temperatury powietrza w Paryżu jesienią w latach 1757-2011 **Fig. 15a.** Changes of air temperature in Paris in Autumn in the 1757-2011 years

Rys. 15b. Ekstremalne wartości średniej temperatury powietrza w Paryżu jesienią w latach 1757-2011 **Fig. 15b**. Extreme values of average air temperature in Paris in Autumn in the 1757-2011 years.

ZIMA (XII-II)

Rys. 16a. Zmiany temperatury powietrza w Paryżu w zimie w latach 1757-2011 **Fig. 16a.** Changes of air temperature in Paris in Winter in the 1757-2011 years

Rys. 16b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w zimie w latach 1757-2011 **Fig. 16b**. Extreme values of average air temperature in Paris in Winter in the 1757-2011 years.

Rys. 17a. Zmiany temperatury powietrza w Paryżu w roku w latach 1757-2011 **Fig. 17a.** Changes of air temperature in Paris in year in the 1757-2011 years

Rys. 17b. Ekstremalne wartości średniej temperatury powietrza w Paryżu w roku w latach 1757-2011 **Fig. 17b**. Extreme values of average air temperature in Paris in year in the 1757-2011 years.

3.2. Ekstrema temperatury powietrza w Berlinie w latach 1769-2017

Ekstrema temperatury powietrza (największe ochłodzenia i ocieplenia) w Berlinie określono na podstawie wyników pomiarów w latach 1769-2017 (tab. 2, tab. 2a, rys 18a-34a, rys. 18b-34b).

Tabela 2. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza w Berlinie w latach 1769-2017

Table 2. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Berlin in years 1769-2017

	T _{sr} ^o C	σ	T _{sr} -2σ	$T_{\rm sr}$ +2 σ
I	-0,695	3,24041	-7,17552	5,78612
II	0,671	2,89348	-5,11584	6,45809
Ш	3,707	2,32681	-0,94676	8,36050
IV	8,706	1,84351	5,01945	12,39349
V	13,844	1,74843	10,34696	17,34067
VI	17,233	1,53298	14,16738	20,29928
VII	18,882	1,62156	15,63841	22,12465
VIII	18,164	1,52219	15,11987	21,20865
IX	14,457	1,42422	11,60859	17,30546
Х	9,329	1,53890	6,25071	12,40632
XI	4,122	1,81398	0,49372	7,74965
XII	0,904	2,53211	-4,16061	5,96784
III-V	8,752	1,28843	6,17552	11,32925
VI-VIII	18,093	1,07941	15,93422	20,25186
IX-XI	9,302	1,03027	7,24188	11,36294
XII-II	0,296	2,12744	-3,95915	4,55061
I-XII	9,110	0,89635	7,31758	10,90300

Tabela 2a. Najchłodniejsze (t_{inf} , T_{inf}) i najcieplejsze (t_{sup} , T_{sup}) zimy, lata i rok w Berlinie (1769-2017) **Table 2a.** The frosty (t_{inf} , T_{inf}) and hot (t_{inf} , T_{inf}) winters, summers, and years in Berlin (1769-2017)

Zima			Lato				Rok				
$T_{\rm inf} \le -3,96$ $T_{\rm sup} \ge 4,55$		$T_{\rm inf} \leq 15,93$		$T_{\rm sup} \ge 20,25$		$T_{\rm inf} \leq 7,32$		$T_{\rm sup} \ge 10,90$			
1830	-6,63	2007	4,83	1962	15,43	1819	20,37	1799	6,59	2000	10,94
1940	-6,00			1844	15,83	1992	20,47	1805	6,78	1779	10,98
1947	-5,20					2003	20,47	1829	6,83	2015	11,25
1823	-5,10					1775	20,53	1812	6,83	2014	11,46
1838	-5,00					1781	20,90	1940	7,02		
1799	-4,97					1826	21,00	1814	7,15		
1963	-4,93					1834	21,23	1816	7,20		
1805	-4,53					1838	7,24	1838	7,24		
1929	-4,33										
1800	-4,20										
1784	-4,00										

W Berlinie bardzo mroźne zimy (BMZ) o temperaturze $T_{inf} \leq -3,959$ °C wystąpiły w latach:

1830 1940 1947 1823 1838 1799 1963 1805 1929 1800 1784 -6,63 -6,00 -5,20 -5,10 -5,00 -4,97 -4,93 -4,53 -4,33 -4,20 -4,00

a bardzo gorące lata (BGL) o temperaturze $T_{sup} \ge 20,252$ °C – w latach:

STYCZEŃ (I)

Rys. 18a. Zmiany temperatury powietrza w Berlinie w styczniu w latach 1769-2017 **Fig. 18a.** Changes of air temperature in Berlin in January in the 1769-2017 years

Rys. 18b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w styczniu w latach 1769-2017 **Fig. 18b.** Extreme values of average air temperature in Berlin in January in the 1769-2017 years

LUTY (II)

Rys. 19a. Zmiany temperatury powietrza w Berlinie w lutym w latach 1769-2017 **Fig. 19a**. Changes of air temperature in Berlin in February in the 1769-2017 years

Rys. 19b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w lutym w latach 1769-2017 **Fig. 19b.** Extreme values of average air temperature in Berlin in February in the 1769-2017 years

MARZEC(III)

Rys. 20a. Zmiany temperatury powietrza w Berlinie w marcu w latach 1769-2017 **Fig. 20a**. Changes of air temperature in Berlin in March in the 1769-2017 years

Rys. 20b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w marcu w latach 1769-2017 **Fig. 20b**. Extreme values of average air temperature in Berlin in March in the 1769-2017 years

KWIECIEŃ (IV)

 Rys. 21a. Zmiany temperatury powietrza w Berlinie w kwietniu w latach 1769-2017

 Fig. 21a. Changes of air temperature in Berlin in April in the 1769-2017 years

Rys. 21b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w kwietniu w latach 1769-2017 **Fig. 21b**. Extreme values of average air temperature in Berlin in April in the 1769-2017 years

Rys. 22a. Zmiany temperatury powietrza w Berlinie w maju w latach 1769-2017 **Fig. 22a**. Changes of air temperature in Berlin in May in the 1769-2017 years

Rys. 22b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w maju w latach 1769-2017 **Fig. 22b**. Extreme values of average air temperature in Berlin in May in the 1769-2017 years

CZERWIEC (VI)

Rys. 23b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w czerwcu w latach 1769-2017 **Fig. 23b.** Extreme values of average air temperature in Berlin in June in the 1769-2017 years

LIPIEC (VII)

Rys. 24a. Zmiany temperatury powietrza w Berlinie w lipcu w latach 1769-2017 **Fig. 24a.** Changes of air temperature in Berlin in July in the 1769-2017 years

Rys. 24b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w lipcu w latach 1769-2017 **Fig. 24b**. Extreme values of average air temperature in Berlin in July in the 1769-2017 years

SIERPIEŃ (VIII)

Rys. 25a. Zmiany temperatury powietrza w Berlinie w sierpniu w latach 1769-2017 **Fig. 25a.** Changes of air temperature in Berlin in August n the 1769-2017 years

Rys. 25b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w sierpniu w latach 1769-2017 **Fig. 25b**. Extreme values of average air temperature in Berlin in August in the 1769-2017 years

WRZESIEŃ (IX)

Rys. 26a. Zmiany temperatury powietrza w Berlinie we wrześniu w latach 1769-2017 **Fig. 26a.** Changes of air temperature in Berlin in September in the 1769-2017 years

Rys. 26b. Ekstremalne wartości średniej temperatury powietrza w Berlinie we wrześniu w latach 1769-2017 **Fig. 26b**. Extreme values of average air temperature in Berlin in September in the 1769-2017 years

PAŹDZIERNIK (X)

Rys. 27a. Zmiany temperatury powietrza w Berlinie w październiku w latach 1769-2017 **Fig. 27a.** Changes of air temperature in Berlin in October in the 1769-2017 years

Rys. 27b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w październiku w latach 1769-2017Fig. 27b. Extreme values of average air temperature in Berlin in October in the 1769-2017 years

Rys. 28a. Zmiany temperatury powietrza w Berlinie w listopadzie w latach 1769-2017 **Fig. 28a.** Changes of air temperature in Berlin in November in the 1769-2017 years

Rys. 28b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w listopadzie w latach 1769-2017 **Fig. 28b.** Extreme values of average air temperature in Berlin in Novemberr in the 1769-2017 years

GRUDZIEŃ (XII)

Rys. 29a. Zmiany temperatury powietrza w Berlinie w grudniu w latach 1769-2017 **Fig. 29a.** Changes of air temperature in Berlin in December in the 1769-2017 years

Rys. 29b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w grudniu w latach 1769-2017 **Fig. 29b.** Extreme values of average air temperature in Berlin in December in the 1769-2017 years.

 $1760 \quad 1780 \quad 1800 \quad 1820 \quad 1840 \quad 1860 \quad 1880 \quad 1900 \quad 1920 \quad 1940 \quad 1960 \quad 1980 \quad 2000 \quad 2020$

Rys. 30a. Zmiany temperatury powietrza w Berlinie wiosną w latach 1769-2017 **Fig. 30a.** Changes of air temperature in Berlin in spring in the 1769-2017 years

Rys. 30b. Ekstremalne wartości średniej temperatury powietrza w Berlinie wiosną w latach 1769-2017 **Fig. 30b**. Extreme values of average air temperature in Berlin in Spring in the 1769-2017 years.

LATO (VI-VIII)

Rys. 31a. Zmiany temperatury powietrza w Berlinie w lecie w latach 1769-2017 **Fig. 31a.** Changes of air temperature in Berlin in summer in the 1769-2017 years

Rys. 31b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w lecie w latach 1769-2017 **Fig. 31b**. Extreme values of average air temperature in Berlin in Summer in the 1769-2017 years.

Rys. 32a. Zmiany temperatury powietrza w Berlinie jesienią w latach 1769-2017 **Fig. 32a.** Changes of air temperature in Berlin in Autumn in the 1769-2017 years

Rys. 32b. Ekstremalne wartości średniej temperatury powietrza w Berlinie jesienią w latach 1769-2017 **Fig. 32b**. Extreme values of average air temperature in Berlin in Autumn in the 1769-2017 years.

ZIMA (XII-II)

Rys. 33b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w zimie w latach 1769-2017 **Fig. 33b.** Extreme values of average air temperature in Berlin in Winter in the 1769-2017 years.

 Rys. 34a. Zmiany temperatury powietrza w Berlinie w roku w latach 1769-2017

 Fig. 34a. Changes of air temperature in Berlin in year in the 1769-2017 years

Rys. 34b. Ekstremalne wartości średniej temperatury powietrza w Berlinie w roku w latach 1769-2017 **Fig. 34b.** Extreme values of average air temperature in Berlin in year in the 1769-2017 years.

3.3. Ekstrema temperatury powietrza w Moskwie w latach 1780-2017

Ekstrema temperatury powietrza (największe ochłodzenia i ocieplenia) w Moskwie określono na podstawie wyników pomiarów w latach 1780-2017 (tab. 3, tab. 3a, rys. 35a-51a, 35b-51b.).

Tabela 3. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza w Moskwie w latach 1780-2017

Table 3. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Moscov in years 1780-2017

	T _{sr} ^o C	σ	T _{sr} -2σ	T _{sr} +2σ
I	-9,813	4,08054	-17,97412	-1,65195
П	-8,744	3,74212	-16,22817	-1,25970
111	-3,598	2,97681	-9,55149	2,35576
IV	4,811	2,47791	-0,14526	9,76638
V	12,281	2,27813	7,72452	16,83705
VI	16,373	2,02111	12,33070	20,41514
VII	18,622	1,87450	14,87279	22,37080
VIII	16,738	1,88029	12,97694	20,49811
IX	11,024	1,77297	7,47811	14,56998
Х	4,456	1,98887	0,47833	8,43380
XI	-1,871	2,54454	-6,95997	3,21818
XII	-7,145	3,75372	-14,65211	0,36278
III-V	4,498	1,88706	0,72370	8,27195
VI-VIII	17,244	1,44383	14,35642	20,13174
IX-XI	4,518	1,48628	1,54531	7,49042
XII-II	-8,560	2,82565	-14,21174	-2,90912
I-XII	4,425	1,22703	1,97085	6,87897

Tabela 3a. Najchłodniejsze (t_{inf}, T_{inf}) i najcieplejsze (t_{sup}, T_{sup}) zimy, lata i rok w Moskwie(1780-2017) **Table 3a.** The frosty (t_{inf}, T_{inf}) and hot (t_{inf}, T_{inf}) winters, summers, and years in Moscov (1780-2017)

Zima			Lato				Rok				
$T_{inf} \leq -14,21$ $T_{sup} \geq 2,91$		$T_{inf} \leq 14,36$		$T_{\rm sup} \ge 20,13$		$T_{\rm inf} \leq 1,97$		$T_{\rm sup} \ge 6,88$			
1893	-16,83	1961	-2,93	1961	-2,93	2011	20,27	1941	1,683	2014	6,90
1942	-15,03					1938	20,27	1888	1,808	1989	7,05
1956	-14,53					1839	20,87	1907	1,808	2007	7,08
						1841	21,63	1908	1,917	2008	7,31
						2010	22,20			2015	7,41

W Moskwie bardzo mroźne zimy (BMZ) o temperaturze $T_{inf} \leq -14,211$ °C wystąpiły w latach

1893 1942 1956 -16,83 -15,03 -14,53

a bardzo gorące lata (BGL) o temperaturze $T_{sup} \ge 20,132$ °C wystąpiły w latach:

2011193818391841201020,2720,2720,8721,6322,2

STYCZEŃ (I)

Rys. 35a. Zmiany temperatury powietrza w Moskwie w styczniu w latach 1780-2017 **Fig. 35a**. Changes of air temperature in Moscov in January in the 1780-2017 years

Rys. 35b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w styczniu w latach 1780-2017 **Fig. 35b.** Extreme values of average air temperature in Moscov in January in the 1780-2017 years

Rys. 36a. Zmiany temperatury powietrza w Moskwie w lutym w latach 1780-2017 **Fig. 36a**. Changes of air temperature in Moscov in February in the 1780-2017 years

Rys. 36b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w lutym w latach 1780-2017 **Fig. 36b**. Extreme values of average air temperature in Moscov in February in the 1780-2017 years

MARZEC(III)

Rys. 37a. Zmiany temperatury powietrza w Moskwie w marcu w latach 1780-2017 **Fig. 37a**. Changes of air temperature in Moscov in March in the 1780-2017 years

Rys. 37b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w marcu w latach 1780-2017 **Fig. 37b.** Extreme values of average air temperature in Moscov in March in the 1780-2017 years
KWIECIEŃ (IV)

Rys. 38a. Zmiany temperatury powietrza w Moskwie w kwietniu w latach 1780-2017 **Fig. 38a.** Changes of air temperature in Moscov in April in the 1780-2017 years

Rys. 38b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w kwietniu w latach 1780-2017 **Fig. 38b**. Extreme values of average air temperature in Moscov in April in the 1780-2017 years

Rys. 39a. Zmiany temperatury powietrza w Moskwie w maju w latach 1780-2017 **Fig. 39a.** Changes of air temperature in Moscov in May in the 1780-2017 years

Rys. 39b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w maju w latach 1780-2017 **Fig. 39b**. Extreme values of average air temperature in Moscov in May in the 1780-2017 years

CZERWIEC (VI)

Rys. 40a. Zmiany temperatury powietrza w Moskwie w czerwcu w latach 1780-2017 **Fig. 40a**. Changes of air temperature in Moscov in June in the 1780-2017 years

Rys. 40b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w czerwcu w latach 1780-2017 **Fig. 40b.** Extreme values of average air temperature in Moscov in June in the 1780-2017 years

LIPIEC (VII)

Rys. 41a. Zmiany temperatury powietrza w Moskwie w lipcu w latach 1780-2017 **Fig. 41a.** Changes of air temperature in Moscov in July in the 1780-2017 years

Rys. 41b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w lipcu w latach 1780-2017 **Fig. 41b**. Extreme values of average air temperature in Moscov in July in the 1780-2017 years

SIERPIEŃ (VIII)

Rys. 42a. Zmiany temperatury powietrza w Moskwie w sierpniu w latach 1780-2017 **Fig. 42a.** Changes of air temperature in Moscov in August n the 1780-2017 years

Rys. 42b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w sierpniu w latach 1780-2017 **Fig. 42b.** Extreme values of average air temperature in Moscov in August in the 1780-2017 years

WRZESIEŃ (IX)

Rys. 43a. Zmiany temperatury powietrza w Moskwie we wrześniu w latach 1780-2017 **Fig. 43a.** Changes of air temperature in Moscov in September in the 1780-2017 years

Rys. 43b. Ekstremalne wartości średniej temperatury powietrza w Moskwie we wrześniu w latach 1780-2017

Fig. 43b. Extreme values of average air temperature in Moscov in September in the 1780-2017 years

PAŹDZIERNIK (X)

Rys. 44a. Zmiany temperatury powietrza w Moskwie w październiku w latach 1780-2017 **Fig. 44a.** Changes of air temperature in Moscov in October in the 1780-2017 years

Rys. 44b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w październiku w latach 1780-2017

Fig. 44b. Extreme values of average air temperature in Moscov in October in the 1780-2017 years

LISTOPAD (XI)

Rys. 45a. Zmiany temperatury powietrza w Moskwie w listopadzie w latach 1780-2017 **Fig. 45a.** Changes of air temperature in Moscov in November in the 1780-2017 years

Rys. 45b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w listopadzie w latach 1780-2017 **Fig. 45b.** Extreme values of average air temperature in Moscov in Novemberr in the 1780-2017 years

GRUDZIEŃ (XII)

Rys. 46a. Zmiany temperatury powietrza w Moskwie w grudniu w latach 1780-2017 **Fig. 46a.** Changes of air temperature in Moscov in December in the 1780-2017 years

Rys. 46b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w grudniu w latach 1780-2017 **Fig. 46b.** Extreme values of average air temperature in Moscov in December in the 1780-2017 years.

Rys. 47a. Zmiany temperatury powietrza w Moskwie wiosną w latach 1780-2017 **Fig. 47a.** Changes of air temperature in Moscov in spring in the 1780-2017 years

Rys. 47b. Ekstremalne wartości średniej temperatury powietrza w Moskwie wiosną w latach 1780-2017 **Fig. 47b.** Extreme values of average air temperature in Moscov in Spring in the 1780-2017 years.

LATO (VI-VIII)

Rys. 48a. Zmiany temperatury powietrza w Moskwie w lecie w latach 1780-2017 **Fig. 48a.** Changes of air temperature in Moscov in summer in the 1780-2017 years

Rys. 48b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w lecie w latach 1780-2017 **Fig. 48b.** Extreme values of average air temperature in Moscov in Summer in the 1780-2017 years.

JESIEŃ (IX-XI)

Rys. 49a. Zmiany temperatury powietrza w Moskwie jesienią w latach 1780-2017 **Fig. 49a.** Changes of air temperature in Moscov in Autumn in the 1780-2017 years

Rys. 49b. Ekstremalne wartości średniej temperatury powietrza w Moskwie jesienią w latach 1780-2017 **Fig. 49b.** Extreme values of average air temperature in Moscov in Autumn in the 1780-2017 years.

ZIMA (XII-II)

Rys. 50a. Zmiany temperatury powietrza w Moskwie w zimie w latach 1780-2017 **Fig. 50a.** Changes of air temperature in Moscov in Winter in the 1780-2017 years

Rys. 50b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w zimie w latach 1780-2017 **Fig. 50b.** Extreme values of average air temperature in Moscov in Winter in the 1780-2017 years.

Rys. 51a. Zmiany temperatury powietrza w Moskwie w roku w latach 1780-2017 **Fig. 51a.** Changes of air temperature in Moscov in year in the 1780-2017 years

Rys. 51b. Ekstremalne wartości średniej temperatury powietrza w Moskwie w roku w latach 1780-2017 **Fig. 51b.** Extreme values of average air temperature in Moscov in year in the 1780-2017 years.

IV. ANOMALIE TEMPERATURY POWIETRZA W EUROPIE W MIASTACH W PROFILU RÓWNOLEŻNIKOWYM (XVIII-XXI)

Ekstrema temperatury powietrza (lokalne minima i maksima) w Europie w profilu równoleżnikowym określono na podstawie wyników pomiarów w czterech miastach: w Sztokholmie, Tallinie, Wiedniu i Rzymie o szerokości geograficznej φ , długości λ i wysokości nad poziomem morza *H* (rys.1):

	Okres	φ	λ	Н
Sztokholm	1756-2012	59°34'N	18°06'E	44 m
Tallin	1779-2017	59°23'N	24°35'E	34 m
Wiedeń	1775-2012	48°15'N	16°22'E	200 m
Rzym	1811-2012	41°48'N	12°36'E	46 m

Rys. 1. Rozmieszczenie stacji meteorologicznych w Europie **Fig. 1.** Location of meteorological stations in Europe

gdzie: T_{sr} – średnia arytmetyczna, σ – odchylenie tandardowe $t = \frac{T - T_{se}}{\sigma}$ – zmienna standaryzowana, n – długość serii pomiarowej

$$T_{sr} = \frac{1}{n} \sum_{i=1}^{n} T_i \qquad , \qquad \sigma = \left(\frac{1}{n} \sum_{i=1}^{n} (T_i - T_{sr})^2\right)^{\frac{1}{2}}$$
(2)

Rys. 2. Histogram (A) i dystrybuanta (B) temperatury powietrza (T) w zimie w Tallinie (1779-2017) **Fig. 2.** The histograms (A) and cumulative distribution (B) of air temperature) in winter in Tallin (1779-2017)

Prawdopodobieństwo (%) wystąpienia temperatury powietrza w zimie w Paryżu (według danych z lat 1779-2017) w przedziale T_{sr} - 4 $\sigma \le T \le T_{sr}$ + 4 σ wynosi:

	-4 σ – -3 σ	-3 σ – -2 σ	-2 σ – -1 σ	-1 σ–0	$0 - 1 \sigma$	1 σ–2 σ	2 σ-3 σ	$3 \sigma - 4 \sigma$
Emp. %	0,00	3,36	12,61	30,67	35,71	16,81	0,84	0,00
Norm.%	0,13	2,14	13,59	34,13	34,13	13,59	2,14	0,13

O anomaliach termicznych (największych ochłodzeniach i ociepleniach klimatu) informują daty wieloletnich minimów (t_{inf} , T_{inf}) i maksimów (t_{sup} , T_{sup}) temperatury powietrza. Za wyjątkowe pod względem termicznym uznano te miesiące, pory roku, lata, w których średnia temperatura (T) różni się od średniej wieloletniej (T_{sr}) co najmniej o 2 odchylenia standardowe (σ): $T_{inf} \leq T_{sr}$ -2 σ , $T_{sup} \geq T_{sr}$ +2 σ

$T_{\rm inf} \leq T { m sr} - 2 \sigma$	$T_{ m sup} \geq T_{ m sr}$ +2 σ
Bardzo zimny miesiąc (BZ).	Bardzo ciepły miesiąc (BC)
Bardzo zimny rok (BZ)	Bardzo ciepły rok (BC)
Bardzo mroźna zima (BMZ),	Bardzo ciepła zima (BCZ),
Bardzo zimne lato (BZL)	Bardzo gorące lato (BGL))

Na przykład w Tallinie bardzo mroźne zimy (BMZ) o temperaturze $T_{inf} \leq -9,805$ °C wystąpiły w latach:

1829 1942 1871 1809 1820 1893 1789 1838 -11,83 -11,80 -11,17 -10,97 -10,53 -10,53 -10,33 -10,07

a bardzo gorące lata (BGL) o temperaturze $T_{sup} \ge 17,529$ °C – w latach:

1936 2006 2010 2011 1858 1826 1789 1834 17,53 17,56 17,69 17,85 17,87 18,00 18,07 18,37

Wyodrębniono też przypadki bardzo zimnego roku (BZ) o temperaturze $T_{\rm inf} \leq 2,719$ °C :

4.1. Ekstrema temperatury powietrza w Sztokholmie w latach 1756-2012

Ekstrema temperatury powietrza (największe ochłodzenia i ocieplenia) w Sztokholmie określono na podstawie wyników pomiarów w latach 1756-2017 (tab. 1, tab. 1a, rys 1a-17a, rys. 1b-17b).

Tabela 1. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza w Sztokholmie w latach 1756-2012

Table 1. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Stockholm in years 1756-2012

	$T_{\rm sr}$ °C	σ	$T_{\rm sr}$ -2 σ	$T_{\rm sr}$ +2 σ
Ι	-3,299	3,01551	-9,33024	2,73180
II	-3,322	3,22242	-9,76702	3,12266
III	-1,090	2,72417	-6,53862	4,35807
IV	3,808	1,90896	-0,01014	7,62571
V	9,455	1,81849	5,81788	13,09185
VI	14,704	1,55901	11,58625	17,82231
VII	17,358	1,68496	13,98806	20,72790
VIII	16,142	1,66932	12,80338	19,48067
IX	11,826	1,41698	8,99210	14,66004
Х	6,682	1,80258	3,07732	10,28766
XI	1,862	1,93749	-2,01312	5,73685
XII	-1,491	2,48646	-6,46436	3,48148
III-V	4,057	1,65125	0,75497	7,35995
VI-VIII	16,068	1,25084	13,56641	18,56977
IX-XI	6,790	1,16621	4,45773	9,12256
XII-II	-2,707	2,23811	-7,18311	1,76931
I-XII	6,053	1,08219	3,88847	8,21724

Tabela 1a. Najchłodniejsze (t_{inf} , T_{inf}) i najcieplejsze (t_{sup} , T_{sup}) zimy, lata i rok w Sztokholmie (1756-2012) **Table 1a.** The frosty (t_{inf} , T_{inf}) and hot (t_{inf} , T_{inf}) winters, summers, and years in Stockholm (1756-2012)

Zima			Lato				Rok				
t_{inf}	T_{inf}	t _{sup}	T_{sup}	t_{inf}	T_{inf}	t _{sup}	T_{sup}	t_{inf}	T_{inf}	t _{sup}	T_{sup}
1809	-8,67	1973	1,83	1902	13,10	1858	18,57	1867	3,23	1999	8,20
1814	-8,23	2008	2,27	1928	13,23	1775	18,63	1829	3,50	1822	8,33
1871	-8,17			1832	13,43	2006	19,00	1871	3,69	1975	8,36
1942	-7,83			1862	13,53	1997	19,03	1838	3,88	2006	8,43
1789	-7,70			1907	13,53	1826	19,03			2011	8,45
1893	-7,40					1789	19,20			2000	8,48
1805	-7,27					1819	19,20			2008	8,52
1767	-7,23					2002	19,33				

W Sztokholmie bardzo mroźne zimy (BMZ) o temperaturze $T_{inf} \leq -7,183$ °C wystąpiły w latach :

1809 1814 1871 1942 1789 1893 1805 1767 -8,67 -8,23 -8,17 -7,83 -7,70 -7,40 -7,27 -7,23

a bardzo gorące lata (BGL) o temperaturze $T_{sup} \ge 18,570$ °C – w latach

Rys. 1a. Zmiany temperatury powietrza w Sztokholmie w styczniu w latach 1756-2012 **Fig. 1a.** Changes of air temperature in Stockholm in January in the 1756-2012 years

Rys. 1b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w styczniu w latach 1756-2012

Fig. 1b. Extreme values of average air temperature in Stockholm in January in the 1756-2012 years

Rys. 2a. Zmiany temperatury powietrza w Sztokholmie w lutym w latach 1756-2012 **Fig. 2a.** Changes of air temperature in Stockholm in February in the 1756-2012 years

Rys. 2b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w lutym w latach 1756-2012 **Fig. 2b.** Extreme values of average air temperature in Stockholm in February in the 1756-2012 years

MARZEC(III)

Rys. 3a. Zmiany temperatury powietrza w Sztokholmie w marcu w latach 1756-2012 **Fig. 3a.** Changes of air temperature in Stockholm in March in the 1756-2012 years

Rys. 3b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w marcu w latach 1756-2012 **Fig. 3b.** Extreme values of average air temperature in Stockholm in March in the 1756-2012 years

KWIECIEŃ (IV)

Rys. 4a. Zmiany temperatury powietrza w Sztokholmie w kwietniu w latach 1756-2012 **Fig. 4a.** Changes of air temperature in Stockholm in April in the 1756-2012 years

Rys. 4b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w kwietniu w latach 1756-2012

Fig. 4b. Extreme values of average air temperature in Stockholm in April in the 1756-2012 years

Rys. 5a. Zmiany temperatury powietrza w Sztokholmie w maju w latach 1756-2012 **Fig. 5a.** Changes of air temperature in Stockholm in May in the 1756-2012 years

Rys. 5b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w maju w latach 1756-2012 **Fig. 5b** .Extreme values of average air temperature in Stockholm in May in the 1756-2012 years

CZERWIEC (VI)

Rys. 6a. Zmiany temperatury powietrza w Sztokholmie w czerwcu w latach 1756-2012 **Fig. 6a.** Changes of air temperature in Stockholm in June in the 1756-2012 years

Rys. 6b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w czerwcu w latach 1756-2012 **Fig. 6b.** Extreme values of average air temperature in Stockholm in June in the 1756-2012 years

LIPIEC (VII)

Rys. 7a. Zmiany temperatury powietrza w Sztokholmie w lipcu w latach 1756-2012 **Fig. 7a.** Changes of air temperature in Stockholm in July in the 1756-2012 years

Rys. 7b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w lipcu w latach 1756-2012 **Fig. .7b.** Extreme values of average air temperature in Stockholm in July in the 1756-2012 years

SIERPIEŃ (VIII)

Rys. 8b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w sierpniu w latach 1756-2012Fig. 8b. Extreme values of average air temperature in Stockholm in August in the 1756-2012 years

WRZESIEŃ (IX)

Rys. 9a. Zmiany temperatury powietrza w Sztokholmie we wrześniu w latach 1756-2012 **Fig. 9a.** Changes of air temperature in Stockholm in September in the 1756-2012 years

Rys. 9b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie we wrześniu w latach 1756-2012 **Fig. 9b.** Extreme values of average air temperature in Stockholm in September in the 1756-2012 years

PAŹDZIERNIK (X)

Rys. 10a. Zmiany temperatury powietrza w Sztokholmie w październiku w latach 1756-2012 **Fig. 10a.** Changes of air temperature in Stockholm in October in the 1756-2012 years

Rys. 10b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w październiku w latach 1756-2012

Fig. 10b. Extreme values of average air temperature in Stockholm in October in the 1756-2012 years

133

Rys. 11a. Zmiany temperatury powietrza w Sztokholmie w listopadzie w latach 1756-2012 **Fig. 11a.** Changes of air temperature in Stockholm in November in the 1756-2012 years

Rys. 11b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w listopadzie w latach 1756-2012 **Fig. 11b.** Extreme values of average air temperature in Stockholm in Novemberr in the 1756-2012 years

GRUDZIEŃ (XII)

Rys. 12a. Zmiany temperatury powietrza w Sztokholmie w grudniu w latach 1756-2012 **Fig. 12a.** Changes of air temperature in Stockholm in December in the 1756-2012 years

Rys. 12b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w grudniu w latach 1756-2012 **Fig. 12b.** Extreme values of average air temperature in Stockholm in December in the 1756-2012 years.

WIOSNA (III-V)

Rys. 13a. Zmiany temperatury powietrza w Sztokholmie wiosną w latach 1756-2012 **Fig. 13a.** Changes of air temperature in Stockholm in spring in the 1756-2012 years

Rys. 13b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie wiosną w latach 1756-2012 **Fig. 13b.** Extreme values of average air temperature in Stockholm in Spring in the 1756-2012 years.

LATO (VI-VIII)

Rys. 14a. Zmiany temperatury powietrza w Sztokholmie w lecie w latach 1756-2012 **Fig. 14a.** Changes of air temperature in Stockholm in summer in the 1756-2012 years

Rys. 14b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w lecie w latach 1756-2012 **Fig. 14b.** Extreme values of average air temperature in Stockholm in Summer in the 1756-2012 years.

JESIEŃ (IX-XI)

Rys. 15a. Zmiany temperatury powietrza w Sztokholmie jesienią w latach 1756-2012 **Fig. 15a.** Changes of air temperature in Stockholm in Autumn in the 1756-2012 years

Rys. 15b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie jesienią w latach 1756-2012 **Fig. 15b.** Extreme values of average air temperature in Stockholm in Autumn in the 1756-2012 years.

Rys. 16a. Zmiany temperatury powietrza w Sztokholmie w zimie w latach 1756-2012 **Fig. 16a.** Changes of air temperature in Stockholm in Winter in the 1756-2012 years

Rys. 16b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w zimie w latach 1756-2012 **Fig. 16b.** Extreme values of average air temperature in Stockholm in Winter in the 1756-2012 years.

Rys. 17a. Zmiany temperatury powietrza w Sztokholmie w roku w latach 1756-2012 **Fig. 17a.** Changes of air temperature in Stockholm in year in the 1756-2012 years

Rys. 17b. Ekstremalne wartości średniej temperatury powietrza w Sztokholmie w roku w latach 1756-2012 **Fig. 17b.** Extreme values of average air temperature in Stockholm in year in the 1756-2012 years.

4.2. Ekstrema temperatury powietrza w Tallinie w latach 1779-2017

Ekstrema temperatury powietrza (największe ochłodzenia i ocieplenia) w Tallinie określono na podstawie wyników pomiarów w latach 1779-2017 (tab. 2, tab. 2a, rys 18a-34a, rys. 18b-34b)

Tabela 2. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza w Tallinie w latach 1779-2017

Table 2. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Tallin in years 1779-2017

	T _{sr} ^o C	σ	T _{sr} -2σ	T _{sr} +2σ
I	-5,251	3,53194	-12,31496	1,81279
Ш	-5,588	3,67332	-12,93454	1,75873
III	-2,731	2,84240	-8,41623	2,95338
IV	2,694	1,92594	-1,15766	6,54611
V	8,426	1,90435	4,61719	12,23461
VI	13,578	1,60143	10,37492	16,78065
VII	16,594	1,58874	13,41609	19,77103
VIII	15,620	1,47399	12,67248	18,56844
IX	11,395	1,36255	8,67026	14,12045
Х	6,094	1,73065	2,63280	9,55540
XI	0,980	2,04141	-3,10303	5,06261
XII	-2,892	3,02512	-8,94207	3,15839
III-V	2,796	1,70649	-0,61675	6,20922
VI-VIII	15,264	1,13273	12,99847	17,52940
IX-XI	6,156	1,17050	3,81542	8,49741
XII-II	-4,588	2,60871	-9,80533	0,62950
I-XII	4,910	1,09518	2,71956	7,10026

Tabela 2a. Najchłodniejsze (t_{infs} , T_{inf}) i najcieplejsze (t_{sup} , T_{sup}) zimy, lata i rok w Tallinie (1779-2017 **Table 2a.** The frosty (t_{infs} , T_{inf}) and hot (t_{inf} , T_{inf}) winters, summers, and years in Tallin (1779-2017

	Zima			Lato			Rok					
	$t_{ m inf}$	T_{inf}	t _{sup}	T_{sup}	t_{inf}	T_{inf}	t_{sup}	T_{sup}	t_{inf}	T_{inf}	t _{sup}	T_{sup}
Γ	1829	-11,8	2008	1,1	1821	11,73	1936	17,53	1829	1,92	2000	7,10
	1942	-11,8	1925	1,3	1902	12,13	2006	17,56	1867	2,56	1975	7,18
	1871	-11,2			1836	12,73	2010	17,69	1942	2,60	2008	7,30
	1809	-11,0			1928	12,73	2011	17,85	1871	2,67	2015	7,51
	1820	-10,5					1858	17,87				
	1893	-10,5					1826	18,00				
	1789	-10,3					1789	18,07				
	1838	-10,1					1834	18,37				

STYCZEŃ (I)

Rys. 18a. Zmiany temperatury powietrza w Tallinie w styczniu w latach 1779-2017 **Fig. 18a.** Changes of air temperature in Tallin in January in the 1779-2017 years

Rys. 18b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w styczniu w latach 1779-2017 **Fig. 18b.** Extreme values of average air temperature in Tallin in January in the 1779-2017 years

Rys. 19a. Zmiany temperatury powietrza w Tallinie w lutym w latach 1779-2017 **Fig. 19a.** Changes of air temperature in Tallin in February in the 1779-2017 years

Rys. 19b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w lutym w latach 1779-2017 **Fig. 19b.** Extreme values of average air temperature in Tallin in February in the 1779-2017 years

MARZEC(III)

Rys. 20a. Zmiany temperatury powietrza w Tallinie w marcu w latach 1779-2017 **Fig. 20a**. Changes of air temperature in Tallin in March in the 1779-2017 years

Rys. 20b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w marcu w latach 1779-2017 **Fig. 20b.** Extreme values of average air temperature in Tallin in March in the 1779-2017 years

KWIECIEŃ (IV)

Rys. 21a. Zmiany temperatury powietrza w Tallinie w kwietniu w latach 1779-2017 **Fig. 21a.** Changes of air temperature in Tallin in April in the 1779-2017 years

Rys. 21b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w kwietniu w latach 1779-2017 **Fig. 21b.** Extreme values of average air temperature in Tallin in April in the 1779-2017 years

MAJ (V)

Rys. 22a. Zmiany temperatury powietrza w Tallinie w maju w latach 1779-2017 **Fig. 22a.** Changes of air temperature in Tallin in May in the 1779-2017 years

Rys. 22b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w maju w latach 1779-2017 **Fig. 22b.** Extreme values of average air temperature in Tallin in May in the 1779-2017 years

CZERWIEC (VI)

Rys. 23a. Zmiany temperatury powietrza w Tallinie w czerwcu w latach 1779-2017 **Fig. 23a.** Changes of air temperature in Tallin in June in the 1779-2017 years

Rys. 23b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w czerwcu w latach 1779-2017 **Fig. 23b.** Extreme values of average air temperature in Tallin in June in the 1779-2017 years

LIPIEC (VII)

Rys. 24a. Zmiany temperatury powietrza w Tallinie w lipcu w latach 1779-2017 **Fig. 24a.** Changes of air temperature in Tallin in July in the 1779-2017 years

Rys. 24b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w lipcu w latach 1779-2017 **Fig. 24b.** Extreme values of average air temperature in Tallin in July in the 1779-2017 years

SIERPIEŃ (VIII)

Rys. 25a. Zmiany temperatury powietrza w Tallinie w sierpniu w latach 1779-2017 **Fig. 25a.** Changes of air temperature in Tallin in August n the 1779-2017 years

Rys. 25b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w sierpniu w latach 1779-2017 **Fig. 25b.** Extreme values of average air temperature in Tallin in August in the 1779-2017 years

WRZESIEŃ (IX)

Rys. 26a. Zmiany temperatury powietrza w Tallinie we wrześniu w latach 1779-2017 **Fig. 26a.** Changes of air temperature in Tallin in September in the 1779-2017 years

Rys. 26b. Ekstremalne wartości średniej temperatury powietrza w Tallinie we wrześniu w latach 1779-2017 **Fig. 26b**. Extreme values of average air temperature in Tallin in September in the 1779-2017 years

PAŹDZIERNIK (X)

Rys. 27a. Zmiany temperatury powietrza w Tallinie w październiku w latach 1779-2017 **Fig. 27a.** Changes of air temperature in Tallin in October in the 1779-2017 years

Rys. 27b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w październiku w latach 1779-2017

Fig. 27b. Extreme values of average air temperature in Tallin in October in the 1779-2017 years

LISTOPAD (XI)

Rys. 28a. Zmiany temperatury powietrza w Tallinie w listopadzie w latach 1779-2017 **Fig. 28a.** Changes of air temperature in Tallin in November in the 1779-2017 years

Rys. 28b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w listopadzie w latach 1779-2017 **Fig. 28b.** Extreme values of average air temperature in Tallin in November in the 1779-2017 years

Rys. 29a. Zmiany temperatury powietrza w Tallinie w grudniu w latach 1779-2017 **Fig. 29a.** Changes of air temperature in Tallin in December in the 1779-2017 years

Rys. 29b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w grudniu w latach 1779-2017 **Fig. 29b.** Extreme values of average air temperature in Tallin in December in the 1779-2017 years.

Rys. 30a. Zmiany temperatury powietrza w Tallinie wiosną w latach 1779-2017 **Fig. 30a.** Changes of air temperature in Tallin in spring in the 1779-2017 years

Rys. 30b. Ekstremalne wartości średniej temperatury powietrza w Tallinie wiosną w latach 1779-2017 **Fig. 30b.** Extreme values of average air temperature in Tallin in Spring in the 1779-2017 years.

LATO (VI-VIII)

Rys. 31a. Zmiany temperatury powietrza w Tallinie w lecie w latach 1779-2017 **Fig. 31a.** Changes of air temperature in Tallin in summer in the 1779-2017 years

Rys. 31b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w lecie w latach 1779-2017Fig. 31b. Extreme values of average air temperature in Tallin in Summer in the 1779-2017 years.

Rys. 32a. Zmiany temperatury powietrza w Tallinie jesienią w latach 1779-2017 **Fig. 32a.** Changes of air temperature in Tallin in Autumn in the 1779-2017 years

Rys. 32b. Ekstremalne wartości średniej temperatury powietrza w Tallinie jesienią w latach 1779-2017 **Fig. 32b**. Extreme values of average air temperature in Tallin in Autumn in the 1779-2017 years.

ZIMA (XII-II)

Rys. 33a. Zmiany temperatury powietrza w Tallinie w zimie w latach 1779-2017 **Fig. 33a.** Changes of air temperature in Tallin in Winter in the 1779-2017 years

Rys. 33b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w zimie w latach 1779-2017 **Fig. 33b.** Extreme values of average air temperature in Tallin in Winter in the 1779-2017 years.

ROK (I-XII)

Rys. 34b. Ekstremalne wartości średniej temperatury powietrza w Tallinie w roku w latach 1779-2017 **Fig. 34b.** Extreme values of average air temperature in Tallin in year in the 1779-2017 years.

4.3. Ekstrema temperatury powietrza w Wiedniu w latach 1775-2012

Ekstrema temperatury powietrza (największe ochłodzenia i ocieplenia) w Wiedniu określono na podstawie wyników pomiarów w latach 1775-2012 (tab. 3, tab. 3a, rys 35a-51a, rys. 35b-51b)

Tabela 3. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza w Wiedniu w latach 1775-2012

Table 3.	Arithmetic mean	ns (T_{sr}) and stand	lard deviations	(σ) of th	e air temperat	ure in Vien	na in years
1775-2012	2				-		-

	$T_{\rm sr}$ °C	σ	$T_{\rm sr}$ -2 σ	$T_{\rm sr}$ +2 σ
Ι	-1,344	2,93540	-7,21450	4,52710
II	0,470	2,85837	-5,24699	6,18648
III	4,403	2,28113	-0,15932	8,96520
IV	9,743	1,88281	5,97724	13,50848
V	14,647	1,79789	11,05128	18,24284
VI	17,873	1,48093	14,91126	20,83496
VII	19,683	1,48522	16,71233	22,65321
VIII	19,076	1,54015	15,99574	22,15636
IX	15,149	1,46768	12,21337	18,08411
Х	9,726	1,57991	6,56622	12,88588
XI	4,142	1,85300	0,43601	7,84802
XII	0,282	2,60219	-4,92202	5,48672
III-V	9,598	1,31539	6,96684	12,22840
VI-VIII	18,877	1,11175	16,65381	21,10082
IX-XI	9,672	1,08588	7,50052	11,84402
XII-II	2,908	1,67632	-0,44437	6,26089
I-XII	9,488	0,93145	7,62461	11,35039

Tabela 3a. Najchłodniejsze (t_{inf} , T_{inf}) i najcieplejsze (t_{sup} , T_{sup}) zimy, lata i rok w Wiedniu (1775-2017 **Table 3a.** The frosty (t_{inf} , T_{inf}) and hot (t_{sup} , T_{sup}) winters, summers, and years in Vienna (1775-2017

	Zi	Zima Lato Rok					Lato			Rok	
t _{inf}	T_{inf}	t _{sup}	T_{sup}	t _{inf}	T_{inf}	t_{sup}	T_{sup}	t_{inf}	T_{inf}	t_{sup}	T_{sup}
1929 1940 1838 1942 1830 1963 1858	-2,30 -1,97 -1,93 -1,82 -1,59 -0,83 -0,76	2002 2008 2007	6,33 7,18 7,57	1913	16,57	1994 1834 1807 2007 1992 2012 1811 2003	21,23 21,47 21,53 21,63 21,73 21,77 22,37 23,00	1829 1940 1838 1864 1871 1840	6,60 7,32 7,38 7,38 7,47	2002 2003 2009 2011 1994 2000 2012 2008 2007	11,32 11,43 11,45 11,56 11,59 11,67 11,79 11,87 12,10

W Wiedniu bardzo mroźne zimy (BMZ) o temperaturze $T_{inf} \leq -0,44$ °C wystąpiły w latach :

1929 1940 1838 1942 1830 1963 1858 -2,30 -1,97 -1,93 -1,82 -1,59 -0,83 -0,76

a bardzo gorące lata (BGL) o temperaturze $T_{sup} \ge 21,10$ °C w czasie

1994183418072007199220121811200321,2321,4721,5321,6321,7321,7722,3723,00

Rys. 35a. Zmiany temperatury powietrza w Wiedniu w styczniu w latach 1775-2012 **Fig. 35a.** Changes of air temperature in Vienna in January in the 1775-2012 years

Rys. 35b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w styczniu w latach 1775-2012 **Fig. 35b.** Extreme values of average air temperature in Vienna in January in the 1775-2012 years

LUTY (II)

Rys. 36a. Zmiany temperatury powietrza w Wiedniu w lutym w latach 1775-2012 **Fig. 36a.** Changes of air temperature in Vienna in February in the 1775-2012 years

Rys. 36b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w lutym w latach 1775-2012 **Fig. 36b.** Extreme values of average air temperature in Vienna in February in the 1775-2012 years

MARZEC(III)

Rys. 37a. Zmiany temperatury powietrza w Wiedniu w marcu w latach 1775-2012 **Fig. 37a.** Changes of air temperature in Vienna in March in the 1775-2012 years

Rys. 37b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w marcu w latach 1775-2012 **Fig. 37b.** Extreme values of average air temperature in Vienna in March in the 1775-2012 years

KWIECIEŃ (IV)

Rys. 38a. Zmiany temperatury powietrza w Wiedniu w kwietniu w latach 1775-2012 **Fig. 38a.** Changes of air temperature in Vienna in April in the 1775-2012 years

Rys. 38b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w kwietniu w latach 1775-2012 **Fig. 38b.** Extreme values of average air temperature in Vienna in April in the 1775-2012 years

MAJ (V)

Rys. 39a. Zmiany temperatury powietrza w Wiedniu w maju w latach 1775-2012 **Fig. 39a**. Changes of air temperature in Vienna in May in the 1775-2012 years

Rys. 39b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w maju w latach 1775-2012 **Fig. 39b.** Extreme values of average air temperature in Vienna in May in the 1775-2012 years

CZERWIEC (VI)

Rys. 40a. Zmiany temperatury powietrza w Wiedniu w czerwcu w latach 1775-2012 **Fig. 40a.** Changes of air temperature in Vienna in June in the 1775-2012 years

Rys. 40b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w czerwcu w latach 1775-2012 **Fig. 40b.** Extreme values of average air temperature in Vienna in June in the 1775-2012 years

LIPIEC (VII)

Rys. 41a. Zmiany temperatury powietrza w Wiedniu w lipcu w latach 1775-2012 **Fig. 41a.** Changes of air temperature in Vienna in July in the 1775-2012 years

Rys. 41b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w lipcu w latach 1775-2012 **Fig. 41b.** Extreme values of average air temperature in Vienna in July in the 1775-2012 years

SIERPIEŃ (VIII)

Rys. 42a. Zmiany temperatury powietrza w Wiedniu w sierpniu w latach 1775-2012 **Fig. 42a.** Changes of air temperature in Vienna in August n the 1775-2012 years

Rys. 42b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w sierpniu w latach 1775-2012 **Fig. 42b.** Extreme values of average air temperature in Vienna in August in the 1775-2012 years

WRZESIEŃ (IX)

Rys. 43b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu we wrześniu w latach 1775-2012 **Fig. 43b.** Extreme values of average air temperature in Vienna in September in the 1775-2012 years

PAŹDZIERNIK (X)

Rys. 44b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w październiku w latach 1775-2012Fig. 44b. Extreme values of average air temperature in Vienna in October in the 1775-2012 years

LISTOPAD (XI)

Rys. 45b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w listopadzie w latach 1775-2012 **Fig. 45b.** Extreme values of average air temperature in Vienna in Novemberr in the 1775-2012 years

GRUDZIEŃ (XII)

Rys. 46a. Zmiany temperatury powietrza w Wiedniu w grudniu w latach 1775-2012 **Fig. 46a.** Changes of air temperature in Vienna in December in the 1775-2012 years

Rys. 46b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w grudniu w latach 1775-2012 **Fig. 46b.** Extreme values of average air temperature in Vienna in December in the 1775-2012 years.

Rys. 47a. Zmiany temperatury powietrza w Wiedniu wiosną w latach 1775-2012 **Fig. 47a.** Changes of air temperature in Vienna in spring in the 1775-2012 years

Rys. 47b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu wiosną w latach 1775-2012 **Fig. 47b.** Extreme values of average air temperature in Vienna in Spring in the 1775-2012 years.

LATO (VI-VIII)

Rys. 48a. Zmiany temperatury powietrza w Wiedniu w lecie w latach 1775-2012 **Fig. 48a.** Changes of air temperature in Vienna in summer in the 1775-2012 years

Rys. 48b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w lecie w latach 1775-2012 **Fig. 48b.** Extreme values of average air temperature in Vienna in Summer in the 1775-2012 years.

Rys. 49a. Zmiany temperatury powietrza w Wiedniu jesienią w latach 1775-2012 **Fig. 49a.** Changes of air temperature in Vienna in Autumn in the 1775-2012 years

Rys. 49b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu jesienią w latach 1775-2012 **Fig. 49b.** Extreme values of average air temperature in Vienna in Autumn in the 1775-2012 years

ZIMA (XII-II)

Rys. 50a. Zmiany temperatury powietrza w Wiedniu w zimie w latach 1775-2012 **Fig. 50a.** Changes of air temperature in Vienna in Winter in the 1775-2012 years

Rys. 50b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w zimie w latach 1775-2012 **Fig. 50b.** Extreme values of average air temperature in Vienna in Winter in the 1775-2012 years.

Rys. 51a. Zmiany temperatury powietrza w Wiedniu w roku w latach 1775-2012 **Fig. 51a.** Changes of air temperature in Vienna in year in the 1775-2012 years

Rys. 51b. Ekstremalne wartości średniej temperatury powietrza w Wiedniu w roku w latach 1775-2012 **Fig. 51b.** Extreme values of average air temperature in Vienna in year in the 1775-2012 years.

4.4. Ekstrema temperatury powietrza w Rzymie w latach 1811-2012

Ekstrema temperatury powietrza (największe ochłodzenia i ocieplenia) w Rzymie określono na podstawie wyników pomiarów w latach 1811-2012 (tab. 4, tab. 4a, rys 52a-68a, rys. 52b-68b)

Tabela 4. Średnie arytmetyczne (T_{sr}) i odchylenia standardowe (σ) temperatury powietrza w Rzymie w latach 1811-2012

1811-2012				
	$T_{\rm sr} {}^{\rm o} {\rm C}$	σ	$T_{\rm sr}$ -2 σ	$T_{\rm sr}$ +2 σ
Ι	7,220	1,51963	4,18116	10,25967
II	8,260	1,49291	5,27439	11,24603
III	10,556	1,22061	8,11479	12,99725
IV	13,684	1,07585	11,53260	15,83599
V	17,857	1,29770	15,26160	20,45240
VI	21,802	1,24973	19,30211	24,30103
VII	24,527	1,16340	22,20043	26,85403
VIII	24,342	1,13102	22,08038	26,60444
IX	21,023	1,24202	18,53900	23,50707
Х	16,694	1,24226	14,20920	19,17823
XI	11,850	1,39846	9,05334	14,64718
XII	8,425	1,44570	5,53360	11,31640

0,81665

0,94173

0,90732

1,00445

0,52114

12,38877

21,66723

14,70648

5,95707

14,47771

15,65538

25,43416

18,33575 9,97486

16,56229

Table 4. Arithmetic means (T_{sr}) and standard deviations (σ) of the air temperature in Rome in years 1811-2012

Tabela 4a. Najchłodniejsze (t_{inf} , T_{inf}) i najcieplejsze (t_{sup} , T_{sup}) zimy, lata i rok Rzymie (1811-2012 **Table 4a.** The frosty (t_{inf} , T_{inf}) and hot (t_{inf} , T_{inf}) winters, summers, and years in Rome (1811-2012

	Zii	ma			L	ato		Rok			
t_{inf}	Tinf	t _{sup}	T_{sup}	t_{inf}	Tinf	t_{sup}	T_{sup}	t_{inf}	Tinf	t_{sup}	T_{sup}
1929	5,20	1955	9,97	1953	20,75	1945	25,57	1850	13,97	1820	16,56
1858	5,47	1979	10,07	1825	21,70	1950	25,73	1851	14,01	1811	16,57
1880	5,47	1988	10,17			1947	25,87			2011	16,58
1942	5,70	1977	10,60			1928	25,90			1841	16,68
1901	5,87					2012	25,97			1982	16,68
1891	5,97					1822	26,63			2003	16,70
1905	5,97					2003	26,90			1822	17,20
										1820	16,56

W Rzymie bardzo mroźne zimy (BMZ) o temperaturze $T_{inf} \leq 5,96$ °C wystąpiły w latach

1929	1858	1880	1942	1901	1891	1905
5,20	5,47	5,47	5,70	5,87	5,97	5,97

14,022

23,551

16,521

7,966

15,520

III-V

VI-VIII

IX-XI

XII-II

I-XII

a bardzo gorące lata (BGL) o temperaturze $T_{sup} \ge 25,43$ °C – w latach

1945	1950	1947	1928	2012	1822	2003
25,57	25,73	25,87	25,90	25,97	26,63	26,90

Rys. 52a. Zmiany temperatury powietrza w Rzymie w styczniu w latach 1811-2012 **Fig. 52a.** Changes of air temperature in Rome in January in the 1811-2012 years

Rys. 52b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w styczniu w latach 1811-2012 **Fig. 52b.** Extreme values of average air temperature in Rome in January in the 1811-2012 years

Rys. 53a. Zmiany temperatury powietrza w Rzymie w lutym w latach 1811-2012 **Fig. 53a.** Changes of air temperature in Rome in February in the 1811-2012 years

Rys. 53b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w lutym w latach 1811-2012 **Fig. 53b.** Extreme values of average air temperature in Rome in February in the 1811-2012 years

MARZEC (III)

Rys. 54a. Zmiany temperatury powietrza w Rzymie w marcu w latach 1811-2012 **Fig. 54a.** Changes of air temperature in Rome in March in the 1811-2012 years

Rys. 54b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w marcu w latach 1811-2012 **Fig. 54b.** Extreme values of average air temperature in Rome in March in the 1811-2012 years

KWIECIEŃ (IV)

Rys. 55a. Zmiany temperatury powietrza w Rzymie w kwietniu w latach 1811-2012 **Fig. 55a.** Changes of air temperature in Rome in April in the 1811-2012 years

Rys. 55b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w kwietniu w latach 1811-2012 **Fig. 55b.** Extreme values of average air temperature in Rome in April in the 1811-2012 years

Rys. 56a. Zmiany temperatury powietrza w Rzymie w maju w latach 1811-2012 **Fig. 56a.** Changes of air temperature in Rome in May in the 1811-2012 years

Rys. 56b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w maju w latach 1811-2012 **Fig. 56b.** Extreme values of average air temperature in Rome in May in the 1811-2012 years

CZERWIEC (VI)

Rys. 57a. Zmiany temperatury powietrza w Rzymie w czerwcu w latach 1811-2012 **Fig. 57a.** Changes of air temperature in Rome in June in the 1811-2012 years

Rys. 57b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w czerwcu w latach 1811-2012 **Fig. 57b.** Extreme values of average air temperature in Rome in June in the 1811-2012 years

LIPIEC (VII)

Rys. 58a. Zmiany temperatury powietrza w Rzymie w lipcu w latach 1811-2012 **Fig. 58a.** Changes of air temperature in Rome in July in the 1811-2012 years

Rys. 58b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w lipcu w latach 1811-2012 **Fig. 58b.** Extreme values of average air temperature in Rome in July in the 1811-2012 years

SIERPIEŃ (VIII)

Rys. 59b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w sierpniu w latach 1811-2012 **Fig. 59b.** Extreme values of average air temperature in Rome in August in the 1811-2012 years

WRZESIEŃ (IX)

Rys. 60a. Zmiany temperatury powietrza w Rzymie we wrześniu w latach 1811-2012 **Fig. 60a.** Changes of air temperature in Rome in September in the 1811-2012 years

Rys. 60b. Ekstremalne wartości średniej temperatury powietrza w Rzymie we wrześniu w latach 1811-2012 **Fig. 60b.** Extreme values of average air temperature in Rome in September in the 1811-2012 years

PAŹDZIERNIK (X)

Rys. 61a. Zmiany temperatury powietrza w Rzymie w październiku w latach 1811-2012 **Fig. 61a.** Changes of air temperature in Rome in October in the 1811-2012 years

Rys. 61b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w październiku w latach 1811-2012Fig. 61b. Extreme values of average air temperature in Rome in October in the 1811-2012 years

LISTOPAD (XI)

Rys. 62a. Zmiany temperatury powietrza w Rzymie w listopadzie w latach 1811-2012 **Fig. 62a.** Changes of air temperature in Rome in November in the 1811-2012 years

Rys. 62b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w listopadzie w latach 1811-2012 **Fig. 62b.** Extreme values of average air temperature in Rome in November in the 1811-2012 years

Rys. 63a. Zmiany temperatury powietrza w Rzymie w grudniu w latach 1811-2012 **Fig. 63a.** Changes of air temperature in Rome in December in the 1811-2012 years

Rys. 63b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w grudniu w latach 1811-2012 **Fig. 63b.** Extreme values of average air temperature in Rome in December in the 1811-2012 years.

Rys. 64a. Zmiany temperatury powietrza w Rzymie wiosną w latach 1811-2012 **Fig. 64a.** Changes of air temperature in Rome in spring in the 1811-2012 years

Rys. 64b. Ekstremalne wartości średniej temperatury powietrza w Rzymie wiosną w latach 1811-2012 **Fig. 64b.** Extreme values of average air temperature in Rome in Spring in the 1811-2012 years.

Rys. 65a. Zmiany temperatury powietrza w Rzymie w lecie w latach 1811-2012 **Fig. 65a.** Changes of air temperature in Rome in summer in the 1811-2012 years

Rys. 65b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w lecie w latach 1811-2012 **Fig. 65b.** Extreme values of average air temperature in Rome in Summer in the 1811-2012 years.

JESIEŃ (IX-XI)

Rys. 66a. Zmiany temperatury powietrza w Rzymie jesienią w latach 1811-2012 **Fig. 66a.** Changes of air temperature in Rome in Autumn in the 1811-2012 years

Rys. 66b. Ekstremalne wartości średniej temperatury powietrza w Rzymie jesienią w latach 1811-2012 **Fig. 66b.** Extreme values of average air temperature in Rome in Autumn in the 1811-2012 years.

Rys. 67a. Zmiany temperatury powietrza w Rzymie w zimie w latach 1811-2012 **Fig. 67a.** Changes of air temperature in Rome in Winter in the 1811-2012 years

Rys. 67b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w zimie w latach 1811-2012 **Fig. 67b.** Extreme values of average air temperature in Rome in Winter in the 1811-2012 years.

Rys. 68a. Zmiany temperatury powietrza w Rzymie w roku w latach 1811-2012 **Fig. 68a.** Changes of air temperature in Rome in year in the 1811-2012 years

Rys. 68b. Ekstremalne wartości średniej temperatury powietrza w Rzymie w roku w latach 1811-2012 **Fig. 68b.** Extreme values of average air temperature in Rome in year in the 1811-2012 years.

V. ANOMALIE KLIMATU EUROPY W OSTATNIM TYSIĄCLECIU X-XX WEDŁUG DANYCH DENDROLOGICZNYCH

5.1. Zarys badań dendroklimatycznych

Jedną z możliwości wykorzystania "zapisów" warunków klimatycznych jest analiza słojów przyrostu rocznego drzew.

Rozmiary i właściwości przyrostu rocznego drzew zależą przede wszystkim od warunków klimatycznych. Szerokość słoja pozwala na "odczytanie" informacji o warunkach środowiskowych, jakie występowały w czasie życia danego drzewa od momentu wykiełkowania aż do obumarcia. Należy jednak mieć na uwadze, że różne gatunki reagują na zmienne warunki środowiskowe w różny sposób. Również przyrosty drewna poszczególnych drzew w obrębie jednego gatunku może się znacznie różnić (Briffa 2000).

Pierwsze badania w zakresie relacji rocznych przyrostów drzew z klimatem podjął A.E. Douglass (1941, 1944), który poszukiwał zależności warunków klimatycznych od liczb Wolfa (od aktywności Słońca). Brak danych pomiarowych chciał zastąpić wynikami pomiarów szerokości słojów drzew. Od tego czasu opracowano szczegółową metodykę badań oraz przeprowadzono wiele analiz pozwalających ustalić związki między przyrostami drewna, a temperaturą powietrza i opadami atmosferycznymi, dla jak największej liczby gatunków (Fritts 1976, Zielski, Krąpiec 2004).

Poznanie związków przyrost \rightarrow klimat umożliwia próbę rekonstrukcji warunków środowiska w okresie przed pomiarami instrumentalnymi. Aby jednak było to możliwe konieczna jest utworzenie możliwie najdłuższych ciągów przyrostów – chronologii szerokości słojów rocznych. Najdłuższa europejska sekwencja przyrostowa liczy 10 430 lat i prezentuje sięgające 8480 r. p.n.e. przyrosty dębów z południowych Niemiec. Najdłuższe polskie chronologie to zestawione przez M. Krąpca ciągi przyrostowe dębu z Wielkopolski (449-1994), Dolnego Śląska (780-1994) i Małopolski (910-1997) oraz dąb z Pomorza Gdańskiego, obejmująca okres 996-1985 autorstwa T. Ważnego. Równie długie chronologie utworzono także i dla innych gatunków drzewiastych w Polsce. A. Zielski (2004) opracował ciąg przyrostów sosny z terenów położonych nad dolną Wisłą obejmujący lata 1106-1994. Zbliżony zasięg czasowy prezentuje utworzona przez E. Szychowską-Krapiec (2000) chronologia jodły z południowej Polski. Krótsze są natomiast chronologie świerkowe, które utworzono dla Beskidu Żywieckiego (1641-1995, E. Szychowska Krapiec) i Babiogórskiego Parku Narodowego (1650-1993, Z. Bednarz).

Jak do tej pory nie przeprowadzono szerszej rekonstrukcji klimatu Polski w oparciu o dane dendrologiczne. Jedyne podjęte próby to prace dotyczące Babiogórskiego Parku Narodowego (Bednarz 1996) i Polski północnej (Przybylak i inni 2001). Dotychczas opracowano już rekonstrukcje klimatu obejmujące ostatnie dwa tysiące lat. Nie dotyczą one jednak klimatu w ciągu całego roku, lecz najczęściej tzw. "miesięcy letnich", dla których wcześniejsze badania ustaliły statystycznie istotne powiązanie przyrostów drewna z warunkami klimatycznymi.

5.2. Mroźne zimy w Polsce w X-XVI wieku według źródeł historycznych

Na szczególną uwagę zasługują anomalie temperatury powietrza w Europie. Informacji o występowaniu bardzo mroźnych zim i upalnych lat, a w szczególności na ziemiach polskich dostarczają źródła historyczne. Dużo wiadomości na ten temat zawiera publikacja:

 Girguś R., Strupczewski W., 1965, Wyjątki ze źródeł historycznych o nadzwyczajnych zjawiskach hydrologiczno-meteorologicznych na ziemiach polskich w wiekach od X do XVI, (red. A. Rojecki), Wyd. K i Ł Warszawa

Oto przykłady opisów dotyczących ostrych zim:

- ZIMA 940/941 (Polska):Ostra zima, ukazały się komety.
- ZIMA 1069 (Polska Zachodnia): Ponieważ rzeki przez duże zimna były skute [lodem], wtargnął cesarz Henryk do ziemi Łużyczan.
- **ZIMA 1110/1111** (Polska Północna: Niestrudzony Bolesław także zimową porą nie odpoczywał bezczynny w spokoju, lecz wkroczył do Prus, krainy północnej, skutej lodami. Tam bowiem wkraczając wykorzystał lody na jeziorach i bagnach, które posłużyły mu za most[y], gdyż nie prowadzi[ł] żaden inny dostęp do owej krainy, jak tylko przez jeziora i bagna.
- ZIMA 1322/1323 (Morze Bałtyckie): Było bowiem między Danią, słowiańskim krajem i Jutlandią zamarznięte całe Morze Bałtyckie, tak że rozbójnicy, przychodząc ze słowiańskiego kraju, splądrowali niektóre okolice Danii, a pośrodku morza na lodzie były założone gospody dla przejezdnych.
- **ZIMA 1423** (Morze Bałtyckie): Była tak mocna zima, że Bałtyk był pokryty lodem, że można było konno saniami wozić towary z Gdańska do Lubeki, a również z Pomorza do Danii.
- ZIMA 1431/1432 (Wisła Dolna): Także Wisła była wtedy pokryta bardzo mocnym lodem i stała od dnia świętej Katarzyny [25 listopada] aż do dnia świętego Jerzego [23 kwietnia].
- ZIMA 1455 (Zatoka Gdańska):Tak [był] twardy, że można było do Niedzieli Palmowej [21 marca] jeździć po lodzie z Helu do Gdańska.
- Rok 1493 (Polska): W tym roku zima w styczniu i lutym była tak łagodna, że drzewa w sadach zakwitły, trawa była duża, ptaki wiły gniazda, lecz w marcu mróz wszystko zniszczył.
- ZIMA 1495 (Zatoka Gdańska): Również tego roku była ciężka zima, tak że lód leżał aż do wieczora zapustnego, że można było jechać wprost z wału ochronnego z załadowanymi saniami prosto na Hel i na Redę i z powrotem, i nikt nie wiedział, jak daleko morze było zamarznięte
- ZIMA 1496/1497 (Śląsk, Odra): Była najcięższa zima ze wszystkich minionych lat, jaką ludzie mogli zapamiętać. Zaczęła się na Andrzeja [30 XI 1469] i trwała bezustannie aż do Tyburcjusza [14 IV 1470]. Odra w bardzo wielu miejscach była zamarznięta aż do dnia; wiele ryb w stawach
- ZIMA 1553/1534 (Zatoka Gdańska): Zima była tak sroga, że można było jechać saniami po lodzie aż na Hel, i trwała aż do niedzieli Palmowej [18 marca]. Potem lód spłynął bez szkód.
- ZIMA 1556/1557 (Polska):W końcu tego roku i na początku następnego zima była bardzo trwała; śniegi i wielkie mrozy trwały prawie od świętej Jadwigi [15 października] bez przerwy aż do Zwiastowania NMP [25 marca]. W roku 1557 przez prawie cały marzec aż do końca za-legały lody
- ZIMA 1571/1572 (Polska): W tym roku była, jak podaje M. S. Codex Conventualis, bardzo sroga zima, bowiem od października aż do Wielkanocy bez przerwy trwała, a mróz do tego stopnia był ostry, że woda wylana w powietrze wcześniej zamarzała zanim spadła na ziemię
- ZIMA 1572/1573 (Polska):Również w tym roku zima była bardzo ciężka i długa, a mianowicie od Wszystkich Świętych [1 listopada] do św. Walentego [14 lutego] itd., która w ciągu trzech dni ustąpiła wskutek bardzo silnych wiatrów.
- ZIMA 1939/1940 (-8,8 °C) Warszawa (Obserwatorium Astronomiczne)

- ZIMA 1963 (-7,67 °C) Warszawa (Obserwatorium Astronomiczne)
 W Europie zdarzały się też upalne i suche lata, np.
- ROK 1322 (Wisła, Kraków): W tym samym roku tak wielki był upał, że starzy ludzie stwierdzili, iż nigdy za swoich dni na ziemi krakowskiej takiego żaru nie zaznali, a rzeka Wisła wskutek wielkiej suszy tak bardzo zmniejszyła się, że w licznych miejscach stała się łatwa do przechodzenia w bród dla dziesięcio- i dwunastoletnich chłopców.
- LATO 1540 (Polska): Latem 1540 roku tak potworna była susza, że skały, góry i doliny jakby ogniem były spalone i susza ta utrzymywała się aż do zimy.
- LATO-JESIEŃ 1590 Polska Południowo-Zachodnia .Było bardzo gorące suche lato, tak że w kraju rzeki, jak Bóbr, Kwisa, Kaczawa, Widawa, Oława, Ślęza i wiele innych wyschły całkowicie. Odra również była tak płytka, że można było w każdym miejscu przejść ją w bród

Mroźne zimy w Europie w latach 900-2000 według źródeł historycznych i minimów szerokości słojów najstarszych drzew przedstawiono na rys. 15-16.

2000 -	-	
	- 1963 - 1939	Zima 1963 (-7,67 °C) Warszawa (Obserwatorium Astronomiczne) Zima 1939/1940 (-8,8 °C) Warszawa (Obserwatorium Astronomiczne)
1900 -	-	
1800 -	- 1830	Zima 1830 (-9,2 °C), Warszawa (Obserwatorium Astronomiczne)
1700 -	-	
1600 -	- 1571 - 1553	Zima 1571/1572 (Polska) była bardzo sroga, mróz do tego stopnia był ostry, że woda wylana w powietrze wcześniej zamarzała zanim spadła na ziemię Zima 1553/1554 (Zatoka Gdanska): byla sroga, Przejazdy saniami po lodzie z Zatoki
1500 -	- 1495	Gdanskiej na Hel 1495, Ciężka zima, zamarznięte Morze Bałtyckie
1400 -	- 1423	Zima 1423 (Morze Bałtyckie): Była tak mocna zima, że Bałtyk był pokryty lodem
1300 -	- 1322	Zima 1322/1323 (Morze Bałtyckie): Było bowiem między Danią, słowiańskim krajem i Jutlandią zamarznięte całe Morze Bałtyckie, po środku morza na lodzie były założone gospody
1200 -	-	
1100 -	- 1110 - 1069	Zima 1110/111 (Polska Północna). Lody na jeziorach i bagnach Zima 1069 (Polska Zachodnia): rzeki skute [lodem
1000 -	-	
900 -	- 940	Zima 940/941 (Polska):Ostra zima, ukazały się komety
800 -	-	
700 -		i

Rys. 1. Mroźne zimy w Europie w latach 900-2000 **Fig. 1.** The frosty winters in Europe in years 900-2000

Porównano minima lokalne d_{\min} szerokości słojów czterech najstarszych drzew rosnących w Europie z datami mroźnych zim według kronik historycznych (rys. 1):

- sosna Forfjorddalen (877-1994, Norwegia),
 dąb Pomorze wschodnie (996-1985, Polska),

- dąb Ardeny (1118-1986, Belgia) ,
 modrzew Les Merveilles 2 (988-1974, Francja): (rys. 2).

Niektóre z nich są nieco większe od d_{sr} .-2 σ , gdzie d_{sr} .- średnia wieloletnia, σ - odchylenie standardowe.

2000						
2000	=	1963				
1900	-	1909				
			O 1868	♦ 1838		
1000		1830		♦ 1800	L 1802	△ 1826
1000						
				♦ 1741	□ 1745	
1700	-			0.1670	D 1660	△ 1689
				♦ 1670		
1600	_	1571	1609		□ 1621	
	1=	1571	<i></i>		□ 1572	
	1-	1000	O 1542		- 1.000	
1500	1-	1495				△ 1499
			0 1459	♦ 1439	L 1468	A 1434
1400		1423			□ 1395	△ 1400
					0 1354	
1000	-	1322			□ 1323	
1300	1				m 1265	. 1050
						∆ 1259
1200	-		O 1202	♦ 1209		
				♦ 1169	🗆 1165	△ 1171
1100	_	1110		A 1129		△ 1125
1100	٦_	1069	C 1081	× 1083		
		1002	O 1042	~ 1043		△ 1045
1000	-		0.985	~ ~ ~ ~		
	_	040	0,000	♦ 998		
000	1-	940	0.007			
900	7		0 897			
800	-					
700	_					
/00			- MROŻNE ZIMY (KROł	NIKI HISTOR	YCZNE)	
			O Direct colorada Erada		004 M	
600	-		O Finds sylves is - Forgo	ndalen(8/7-1	354,NOIWegia)	
			Quercus petraea - Pomo	orze wsch (996	-1985), Polska	
500	_		- Quercus petraea - Arder	w(1118-1988,	Deigia)	
500			△ Lanx decidua – Les Mei	weilles 2 (988-	1974, Francja)	
400						

Rys. 2. Mroźne zimy w Europie w latach 900-2000 i d min grubości słojów 4 drzew rosnących w Europie Fig. 2. The frosty winters in Europe in years 900-2000, and d_{\min} of tree ring widths of 4 trees growing in Europe

5.3. Ekstrema szerokości słojów drzew rosnących w Europie (VII-XX)

Analizie statystycznej poddano ciągi chronologiczne grubości słojów drzew tj. sosny, świerka, modrzewia, jodły i dębu rosnących w Europie oraz dębów – z obsza-ru Polski.

Wzięto pod uwagę 30 drzew badanych pod względem okresowość w Atlasie t. XX-XXI (rozdz. IV. *Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według ciągów dendrologicznych*) (tab.1). Ponadto badano szerokości słojów 14 dębów rosnących w Polsce (rozdz. V. *Zmiany klimatu Polski w ostatnich stuleciach według rocznych przyrostów dębów*) (tab.2):

 Stopa-Boryczka M., Boryczka J., Bijak Sz., Cebulski R., Błażek E., Skrzypczuk J., 2007, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XX-XXI, Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według danych dendrologicznych, (red. M. Stopa-Boryczka), Wyd. UW, Warszawa, ss. 266.

Za wyróżniający się pod względem termicznym uznano ten rok, w którym grubość słoja danego drzewa (d_{inf}) różni się od średniej wszystkich jego słojów (d_{sr}) (średniej wieloletniej) co najmniej o dwa odchylenia standardowe (σ).

 $d_{inf} \leq d_{sr} - 2\sigma - bardzo zimny (BZ),$

 $d_{sup} \ge d_{sr} + 2\sigma - bardzo ciepły (BC),$

gdzie:

$$d_{sr} = \frac{1}{n} \sum_{i=1}^{n} d_i \qquad \sigma = \left(\frac{1}{n} \sum_{i=1}^{n} (d_i - d_{sr})^2\right)^{\frac{1}{2}}$$
(1)

Podano też ekstrema grubości słojów drzew: minimum (t_{\min}, d_{\min}) – rok wyjątkowo zimny (WZ) i maksimum (t_{\max}, d_{\max}) . – wyjątkowo ciepły (WC)

Rys. 3. Rozmieszczenie badanych drzew w Europie **Fig. 3**. Localization surveyed trees in Europe

Tabela	1. Lokalizacj	a badanych	drzew rosną	cych w Europie
Table	1. Location	studied trees	growing in	Europe

Drzewa		Lata	$d_{\rm s}$	σ	$d_{ m sr}$ - 2σ	$d_{\rm sr}$ +2 σ	t _{min}	d_{\min}	t_{max}	d_{max}
	Sosna`									
`1	<i>Pinus sylvestris</i> Forfiorddalen (Norwegia)	877-1994	0 995	0 2476	0 4994	1 4898	1081	0 321	1135	2 397
2	Karhunnesakivi (Finlandia)	1398-1993	1 000	0 3031	0 3935	1 6058	1607	0.010	1494	2 260
3	Kola (Rosia)	1577-1997	0.988	0.3201	0 3474	1,6020	1680	0 257	1726	1 861
4	Muddas (Szwecia)	1532-1972	0.998	0 2290	0 5400	1 4559	1680	0 299	1537	1 804
5	Pvaozera (Rosia)	1546-1993	1.000	0.2760	0.4478	1.5517	1582	0.250	1924	2.000
6	Siete, Picos (Hiszpania)	1527-1988	1.000	0.1531	0.6938	1.3063	1601	0.586	1528	1.451
7	Vikran (Norwegia)	1599-1992	0,984	0,2535	0,4771	1,4910	1680	0,338	1658	1,891
	Pinus nigra		<i>,</i>	,	,	,				
8	Puerto Llano (Hiszpania)	1585-1985	1,001	0,2049	0,5910	1,4105	1806	0,364	1933	1,530
9	Riscopal (Hiszpania)	1523-1988	0,999	0,2250	0,5493	1,4493	1526	0,301	1716	1,726
10	Tajo (Hiszpania)	1610-1988	1,001	0,2463	0,5082	1,4934	1771	0,334	1632	1,771
11	Torreton, (Hiszpania)	1485-1988	1,000	0,2597	0,4805	1,5194	1502	0,144	1498	2,465
	Świerk									
12	Falkenstein (Niemcy)	1540-1995	0,919	0,3659	0,1873	1,6510	1629	0,096	1708	2,918
13	Fodara Vedla (Włochy)	1598-1990	0,862	0,3298	0,2028	1,5220	1675	0,220	1598	2,340
14	Guadarrama 1 (Hiszpania)	1726-1983	0,997	0,2659	0,4651	1,5286	1829	0,368	1730	1,878
15	Guadarrama 4 (Hiszpania)	1599-1984	1,000	0,1805	0,6390	1,3611	1963	0,411	1613	1,541
16	Stonnglandes (Norwegia)	403-1997	0,983	0,2286	0,5260	1,4406	1448	0,302	1455	2,259
17	Zagradeniye (Grecja)	1635-1979	0,995	0,1488	0,6976	1,2929	1696	0,601	1650	1,486
	Modrzew									
18	Berchtesgaden (Niemcy)	1339-1947	0,997	0,2255	0,5463	1,4484	1771	0,000	1687	2,034
19	Les Merveilles 1 (Francja)	1187-1974	1,001	0,2691	0,4626	1,5390	1685	0,143	1340	1,881
20	Les Merveilles 2 (Francja)	988-1974	0,992	0,2408	0,5101	1,4732	1685	0,174	1870	1,721
21	Obergurgl (Austria)	1604-1972	0,996	0,2750	0,4463	1,5464	1625	0,067	1663	1,987
22	Pinega 1 (Rosja)	1578-1990	0,506	0,2457	0,0149	0,9979	1836	0,030	1826	1,443
	Jodła									
23	Fodara Vedla (Włochy)	1474-1990	1,138	0,3223	0,4932	1,7826	1675	0,460	1502	2,010
24	Prayo Magno (Włochy)	1540-1973	1,154	0,6069	-0,0598	2,3677	1576	0,050	1914	3,410
	Dąb									
	Quercus rabur									
25	Ardeny (Belgia)	1118-1986	1,328	0,3742	0,5801	2,0769	1354	0,510	1862	2,820
26	Bodensee (Holandia)	1275-1986	1,586	0,5235	0,5391	2,6331	1445	0,580	1275	4,100
	Quercus petraea									
27	Bourgogne (Francja)	681-1991	1,631	0,3899	0,8511	2,4106	843	0,690	1160	3,150
28	Franche-Comte (Francja)	1295-1987	1,810	0,4978	0,8148	2,8059	1330	0,680	1903	3,340
29	Hamburg (Niemcy)	1340-1967	1,645	0,6057	0,4332	2,8560	1700	0,500	1754	4,000
30	Shanes Castle (Irlandia)	1549-1992	1,002	0,2922	0,4175	1,5862	1665	0,134	1704	1,942

1. FORFJORDDALEN (877-1994, NORWEGIA)

Rys. 1a. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Forfjorddalen (877-1994, Norwegia); y(x) – równanie prostej regresji

Rys. 1b. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Forfjorddalen (877-1994, Norwegia); $d_{sr} = 0.995$, $\sigma = 0.2476$

Fig. 1b. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Forfjorddalen (877-1994, Norway); $d_{sr} = 0.995$, $\sigma = 0.2476$

2. KARHUNPESAKIVI (1398-1993, FINLANDIA)

Rys. 2a. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Karhunpesakivi (1398-1993, Finlandia); y(x)) – równanie prostej regresji

Fig. 2a. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Karhunpesakivi (1398-1993, Finland); y(x) – the regression equation

Rys. 2b. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w – Karhunpesakivi (1398-1993, Finlandia): $d_{sr} = 1,000, \sigma = 0,3031$

Fig. 2b. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in – Karhunpesakivi (1398-1993, Finlandia: d_{sr} = 1,000, σ =0,3031

3. KOLA (1577-1997, ROSJA)

Fig. 3a. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Kola (1577-1997, Russia); y(x)) – the regression equation

Fig. 3b. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Kola (1577-1997, Russia); $d_{ss} = 0.988$, $\sigma = 0.3201$

Rys. 4a. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Muddas (1532-1972, Szwecja); y(x)) – równanie prostej regresji

Fig. 4a. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Muddas (1532-1972, Sweden); y(x) – the regression equation

MUDDAS (1532-1972)

Rys. 4b. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Muddas (1532-1972, Szwecja); $d_{sr} = 0,998, \sigma = 0,2290$

Fig. 4b. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Muddas (1532-1972, Sweden); $d_{sr} = 0.998, \sigma = 0.2290$

5. PYAOZERA (1546-1993, ROSJA)

Rys. 5a. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Pyaozera (1546-1993, Rosja); y(x) – równanie prostej regresji

Fig. 5a. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Pyaozera (1546-1993, Russia); y(x) – the regression equation

Fig. 5b. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Pyaozera (1546-1993, Russia); $d_{sr} = 1,000, \sigma = 0,2760$

6. SIETE PICOS (1527-1988, HISZPANIA)

Rys. 6a. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Siete Picos (1527-1988, Hiszpania); y(x) – równanie prostej regresji

Fig. 6a. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Siete Picos (1527-1988, Spain); y(x) – the regression equation

Rys. 6b. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Siete Picos (1527-1988, Hiszpania); $d_{sr} = 1,000, \sigma = 0,1531$

Fig. 6b. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Siete Picos (1527-1988, Spain); $d_{sr} = 1,000, \sigma = 0, 0,1531$

Rys. 7a. Zmiany szerokości słojów sosny (*Pinus sylvestris*) w Vikran (1599-1992, Norwegia); y(x) – równanie prostej regresji

Fig. 7b. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Vikran (1599-1992, Norway); $d_{sr} = 0.984, \sigma = 0.2535$

8. PUERTO LIANO (1585-1985, HISZPANIA)

Rys. 8a. Zmiany szerokości słojów sosny (*Pinus nigra*) w Puerto Llano (1585-1985, Hiszpania); y(x) – równanie prostej regresji

Fig. 8a. Changes of Black pine (*Pinus nigra*) tree ring widths in Puerto Llano (1585-1985, Spain); y(x) – the regression equation

Rys. 8b. Zmiany szerokości słojów sosny (*Pinus nigra*) w Puerto Llano (1585-1985, Hiszpania); $d_{sr} = 1,001, \sigma = 0,2049$

Fig. 8b. Changes of Black pine (*Pinus nigra*) tree ring widths in Puerto Llano (1585-1985, Spain); $d_{sr} = 1,001, \sigma = 0,2049$

Rys. 9a. Zmiany szerokości słojów sosny (*Pinus nigra*) w Riscopal (1523-1988, Hiszpania); y(x) – równanie prostej regresji

Fig. 9a. Changes of Black pine (Pinus *nigra*) tree ring widths in Riscopal (1523-1988, Spain); y(x) – the regression equation

Rys. 9b. Zmiany szerokości słojów sosny (*Pinus nigra*) w Riscopal (1523-1988, Hiszpania); $d_{st} = 0,999, \ \sigma = 0, 0,2250$

Fig. 9b. Changes of Black pine (*Pinus nigra*) tree ring widths in Riscopal (1523-1988, Spain); $d_{sr} = 0,999, \sigma = 0,0,2250$

Fig. 10a. Changes of Black pine (*Pinus nigra*) tree ring widths in Tajo (1610-1988, Spain); y(x) – the regression equation

Rys. 10b. Zmiany szerokości słojów sosny (*Pinus nigra*) w Tajo (1610-1988, Hiszpania); $d_{st} = 1,001, \sigma = 0,2463$

Fig. 10b. Changes of Black pine (*Pinus nigra*) tree ring widths in Tajo (1610-1988, Spain); $d_{sr} = 1,001, \sigma = 0,2463$

11. TORREFON (1485-1988, HISZPANIA)

Rys. 11a. Zmiany szerokości słojów sosny (*Pinus nigra*) w Torrefon (1485-1988, Hiszpania); y(x) – równanie prostej regresji

TORREFON (1485-1988) d ----- dsr 3,0 2,44 2,5 2,47 1,91 1,65 2,12 2,0 1,65 1,65 78 1,58 $d_{\rm sr}$ +2 σ 1.54 1,53 1,57 1,5 1,0 $d_{\rm sr}$ -2 σ 0,5 0,48 0,46 0,29 0,14 **b** 0,0 1500 1550 1450 1600 1650 1700 1750 1800 1850 1900 1950 2000

Fig. 11b. Changes of Black pine (*Pinus nigra*) tree ring widths in Torrefon (1485-1988, Spain); $d_{sr} = 1,000, \sigma = 0,2597$

Fig. 11a. Changes of Black pine (*Pinus nigra*) tree ring widths in Torrfon (1485-1988, Spain); y(x) – the regression equation

12. FALKENSTEIN (1540-1995, NIEMCY)

Rys. 12a. Zmiany szerokości słojów świerka (*Picea abies*) w Falkenstein (1540-1995, Niemcy); y(x) – równanie prostej regresji

Fig. 12b. Changes of Norway spruce (*Picea abies*) tree ring widths in Falkenstein (1540-1995, Germany); $d_{sr} = 0.919, \sigma = 0.3659$

13. FODARA VEDLA (1598-1990, WŁOCHY)

Rys. 13a. Zmiany szerokości słojów świerka (*Picea abies*) w Fodara Vedla (1598-1990, Włochy); y(x) – równanie prostej regresji

Fig. 13b. Changes of Norway spruce (*Picea abies*) tree ring widths in Fodara Vedla (1598-1990, Italia); $d_{sr} = 0.862, \sigma = 0.3298$

14. GUADARRAMA 1 (1726-1983, HISZPANIA)

Rys. 14a. Zmiany szerokości słojów świerka (*Picea abies*) w Guadarrama 1 (1726-1983, Hiszpania); y(x) – równanie prostej regresji

Fig. 14a. Changes of Norway spruce (*Picea abies*) tree ring widths in Guadarrama 1 (1726-1983, Spain); y(x) – the regression equation

Fig. 14b. Changes of Norway spruce (*Picea abies*) tree ring widths in Guadarrama 1 (1726-1983, Spain); $d_{sr} = 0, 0.997, \sigma = 0.2659$

Rys. 15a. Zmiany szerokości słojów świerka (*Picea abies*) w Guadarrama 4 (1599-1984, Hiszpania); y(x) – równanie prostej regresji

Fig. 15a. Changes of Norway spruce (*Picea abies*) tree ring widths in Guadarrama 4 (1599-1984, Spain); y(x) – the regression equation

Fig. 15b. Changes of Norway spruce (*Picea abies*) tree ring widths in Guadarrama 4 (1599-1984, Spain); $d_{sr} = 1,000, \sigma = 0,1805$

Rys. 16a. Zmiany szerokości słojów świerka (*Picea abies*) w Stonnglandes (1403-1997, Norwegia); y(x) – równanie prostej regresji

Fig. 16a. Changes of Norway spruce (*Picea abies*) tree ring widths in Stonnglandes (1403-1997, Norway); y(x) – the regression equation

Rys. 16b. Zmiany szerokości słojów świerka (*Picea abies*) w Stonnglandes (1403-1997, Norwegia); $d_{sr} = 0,983, \sigma = 0,2286$

Fig. 16b. Changes of Norway spruce (*Picea abies*) tree ring widths in Stonnglandes (1403-1997, Norway); $d_{sr} = 0.983$, $\sigma = 0.2286$

216

STONGLANDES (1403-1997)

17. ZAGRADENIYE (1635-1979, GRECJA)

Rys. 17a. Zmiany szerokości słojów świerka (*Picea abies*) w Zagradeniye (1635-1979, Grecja); y(x) – równanie prostej regresji

Fig. 17b. Changes of Norway spruce (*Picea abies*) tree ring widths in Zagradeniye (1635-1979, Greece); $d_{sr} = 0.995$, $\sigma = 0.1488$

18. BERCHTESGADEN (1339-1947, NIEMCY)

Rys. 18a. Zmiany szerokości słojów modrzewia (*Larix decidua*) w Berchtesgaden (1339-1947, Niemcy); y(x) – równanie prostej regresji
Fig. 18a. Changes of European larch (*Larix decidua*) tree ring widths in Berchtesgaden (1339-1947, Germany);

Fig. 18b. Changes of European larch (*Larix decidua*) tree ring widths in Berchtesgaden (1339-1947, Germany); $d_{st} = 0.997$, $\sigma = 0.2255$

LES MERVEILLES 1 (1187--19743)

y(x) – the regression equation

Rys. 19b. Zmiany szerokości słojów modrzewia (*Larix decidua*) w Les Merveilles 1 (1187-1974, Francja); $d_{sr} = 1,001, \sigma = 0,2691$

Fig. 19b. Changes of European larch (*Larix decidua*) tree ring widths in Les Merveilles 1 (1187-1974, France); $d_{sr} = 1,001, \sigma = 0,2691$

^{Rys. 19a. Zmiany szerokości słojów modrzewia (}*Larix decidua*) w Les Merveilles 1 (1187-1974, Francja); y(x) – równanie prostej regresji
Fig. 19a. Changes of European larch (*Larix decidua*) tree ring widths in Les Merveilles 1 (1187-1974, France);

20. LES MERVEILLES 2 (988-1974, FRANCJA)

y(x) – the regression equation

LES MERVEILLES 2 (988-1974)

Fig. 20b. Changes of European larch (*Larix decidua*) tree ring widths in Les Merveilles 2 (988-1974, France); $d_{sr} = 0.992$, $\sigma = 0.2408$

Rys. 21a. Zmiany szerokości słojów modrzewia (*Larix decidua*) w Obergurgl (1604-1972, Austria); y(x) – równanie prostej regresji **Fig. 21a.** Changes of European larch (*Larix decidua*) tree ring widths in Obergurgl (1604-1972, Austria);

OBERGURGL (1604-1972)

Fig. 21b. Changes of European larch (*Larix decidua*) tree ring widths in Obergurgl (1604-1972, Austria); $d_{sr} = 0,996, \sigma = 0,2750$

Rys. 22a. Zmiany szerokości słojów modrzewia (*Larix decidua*) w Pinega 1 (1578-1990, Rosja); y(x) – równanie prostej regresji

Fig. 22a. Changes of European larch (*Larix decidua*) tree ring widths in Pinega 1 (1578-1990, Russia); y(x) – the regression equation

Rys. 22b. Zmiany szerokości słojów modrzewia (*Larix decidua*) w Pinega 1 (1578-1990, Rosja); $d_{sr} = 0.506, \sigma = 0.2457$ **Fig. 22b.** Changes of European larch (*Larix decidua*) tree ring widths in Pinega 1 (1578-1990, Russia);

Fig. 22b. Changes of European larch (*Larix decidua*) tree ring widths in Pinega 1 (1578-1990, Russia). $d_{st} = 0,506, \sigma = 0,2457$

23. FODARA VEDLA (1474-1990, WŁOCHY)

Rys. 23a. Zmiany szerokości słojów jodły (Abies alba) w Fodara Vedla (1474-1990, Włochy); y(x) – równanie prostej regresji **Fig. 23a.** Changes of pine Silver fir (*Abies alba*) tree ring widths in Fodara Vedla (1474-1990, Italia);

Fig. 23b. Changes of pine Silver fir (Abies alba) tree ring widths in Fodara Vedla (1474-1990, Italia); $d_{\rm sr} = 1,138, \sigma = 0,3223$

24. PRAYO MAGNO (1540-1973, WŁOCHY)

Rys. 24a. Zmiany szerokości słojów jodły (*Abies alba*) w Prayo Magno (1540-1973, Włochy); y(x) – równanie prostej regresji **Fig. 24a.** Changes of pine Silver fir (*Abies alba*) tree ring widths in Prayo Magno (1540-1973, Italia); y(x) – the regression equation

Fig. 24b. Changes of pine Silver fir (*Abies alba*) tree ring widths in Prayo Magno (1540-1973, Italia); $d_{sr} = 1,154, \sigma = 0,6069$

25. ARDENY (1118-1986, BELGIA)

Rys. 25a. Zmiany szerokości słojów dębu (*Quercus petraea*) w Ardenach (1118-1986, Belgia); y(x) - równanie prostej regresji

Fig. 25b. Changes of Sessile oak (*Quercus petraea*) tree ring widths in Ardens (1118-1986, Belgium); $d_{sr} = 1,328, \sigma = 0,3742$

26. BODENSEE (1275-1986, HOLANDIA)

Rys. 26a. Zmiany szerokości słojów dębu (*Quercus petraea*) w Bodensee (1275-1986, Holandia); y(x) - równanie prostej regresji

Fig. 26a. Changes of Sessile oak (*Quercus petraea*) tree ring widths in Bodensee (1275-1986, Holland); y(x) – the regression equation

Fig. 26b. Changes of Sessile oak (*Quercus petraea*) tree ring widths in Bodensee (1275-1986, Holland); $d_{sr} = 1,586, \sigma = 0,5235$

BOURGOGNE (681-1991)

Rys. 27a. Zmiany szerokości słojów dębu (*Quercus petraea*) w Bourgogne (681-1991, Francja); y(x)) – równanie prostej regresji

Fig. 27b. Changes of Sessile oak (*Quercus petraea*) tree ring widths in Bourgogne (681-1991, France); $d_{sr} = 1,631, \sigma = 0,3899$

28. FRANCHE-COMTE (1294-1987, FRANCJA)

Fig. 28a. Changes of Sessile oak (*Quercus petraea*) tree ring widths in Franche-Comte (1294-1987, France); y(x) – the regression equation

Fig. 28b. Changes of Sessile oak (*Quercus petraea*) tree ring widths in Franche-Comte (1294-1987, France); $d_{sr} = 1,810, \sigma = 0,4978$

29. HAMBURG (1340-1967, NIEMCY)

Rys. 29a. Zmiany szerokości słojów dębu (*Quercus robur*) w Hamburgu (1340-1967, Niemcy); y(x) – równanie prostej regresji

Fig. 29a. Changes of English oak (*Quercus robur*) tree ring widths in Hamburg (1340-1967, Germany); y(x) – the regression equation

Fig. 29b. Changes of English oak (*Quercus robur*) tree ring widths in Hamburg (1340-1967, Germany); $d_{sr} = 1,645, \sigma = 0,6057$

30. SHANES CASTLE (1649-1992, IRLANDIA)

Rys. 30a. Zmiany szerokości słojów dębu (*Quercus robur*) w Shanes Castle (1649-1992, Irlandia); y(x) – równanie prostej regresji

Fig. 30a. Changes of English oak (*Quercus robur*) tree ring widths in Shanes Castle (1649-1992, Ireland); y(x) – the regression equation

Rys. 30b. Zmiany szerokości słojów dębu (*Quercus robur*) w Shanes Castle (1649-1992, Irlandia); $d_{sr} = 1,002, \sigma = 0,2922$

Fig. 30b. Changes of English oak (*Quercus robur*) tree ring widths in Shanes Castle (1649-1992, Ireland); $d_{sr} = 1,002, \sigma = 0,2922$

5.4. Ekstrema szerokości słojów dębów rosnących w Polsce (X-XX)

Za wyjątkowy pod względem termicznym uznano ten rok, w którym grubość słoja danego dębu (d_{inf}) różni się od średniej z wszystkich jego słojów (d_{sr}) (od średniej wieloletniej) co najmniej o 2 odchylenia standardowe (σ) (rys. 31a-414a, rys. 31b-44b) $d_{sr} \leq d_{sr} - 2\sigma - hardzo zimny (BZ)$

$$a_{inf} \le a_{sr} - 26 - bardzo zimny (BZ)$$

 $d_{sup} \ge d_{sr} + 2\sigma - bardzo \text{ ciepły (BC)}$

Podano też ekstrema grubości* słojów drzew: minimum (t_{\min}, d_{\min}) – wyjątkowo zimny rok (WZ) i maksimum (t_{\max}, d_{\max}) . – wyjątkowo ciepły (WC)

 Tabela 2. Rozmieszczenie dębów w Polsce

 Table 2. Localization Sessile oaks in Poland

		Lata	$d_{\rm s}$	σ	$d_{ m sr}$ - 2σ	$d_{\rm sr}$ +2 σ	t _{min}	d_{\min}	t _{max}	d max
31.	Gdańsk	1762-1985	10,002	1,3638	7,2746	12,7299	1790	4,9	1763	14,9
32.	Gołdap	1871-1986	9,999	2,1408	5,7175	14,2807	1940	4,1	1958	15,8
33.	Hajnówka	1720-1984	10,001	2,0128	5,9751	14,0264	2747	3,9	1730	15,8
34.	Koszalin	1782-1986	10,000	1,9384	6,1237	13,8772	1800	5,2	1783	116,7
35.	Kraków	1792-1985	10,000	1,4552	7,0895	12,9105	1840	6,2	1971	13,5
36.	Pomorze Wschodnie	996-1985	9,999	1,4018	7,1959	12,8031	998	4,3	1021	15,9
37.	Poznań	1836-1986	10,000	1,7205	6,5590	13,4410	1836	5,4	1954	14,1
38.	Roztocze	1782-1988	9,996	2,2796	5,4369	14,5553	1784	1,6	1791	16,1
39.	Suwałki	1861-1986	9,997	1,6527	6,6914	13,3022	1940	6,3	1972	14,5
40.	Toruń	1713-1986	10,001	1,6842	6,6324	13,3691	1751	4,6	1801	17,5
41.	Warszawa	1690-1984	9,997	1,5741	6,8490	13,1456	1717	5,7	1730	15,4
42.	Wolin	1554-1986	10,000	1,5105	6,9792	13,0212	1554	5,6	1562	18,5
43.	Wrocław	1727-1986	9,999	1,7275	6,5442	13,4542	1742	4,4	1729	15,6
44.	Zielona Góra	1774-1986	10,000	2,4766	5,0473	14,9536	1774	3,8	1783	25,7

Rys. 31 Rozmieszczenie dębów w Polsce **Fig. 31.** Localization Sessile oaks in Poland

Na przykład w przypadku dębu *Quercus petraea* Pomorze Wschodnie (966-1985 Polska) grubości słojów poniżej średniej z wszystkich słojów ($d_{sr} = 9,999$) o dwa odchylenia standardowe ($\sigma =$ 1,4018) – spełniające warunek $d_{inf} \leq d_{sr}$.-2 σ wystąpiły w latach:

t_{inf}	d_{inf}	t_{inf}	d_{inf}
998	4,3	1439	6,7
1043	5,2	1741	6,7
1044	5,2	1790	6,7
997	5,9	1066	6,8
1838	5,9	1007	6,9
1028	6,5	1083	6,9
1670	6,5	1129	6,9
1800	6,5	1209	6,9
1806	6,6	1096	7,1
1839	6,6	1169	7,1

y(x) – the regression equation

Rys. 31b. Zmiany szerokości słojów dębu (*Quercus petraea*) w Gdańsku (1762-1985) $d_{sr} = 10,002, \sigma = 1,3638$

Fig. 31b. Changes of oaks (*Quercus petraea*) tree ring widths in Gdańsk (1762-1985) $d_{sr} = 10,002, \sigma = 1,3638$

GOŁDAP (1871-1986)

Rys. 32a. Zmiany szerokości słojów dębu (*Quercus petraea*) w Gołdapi (1871-1986) y(x) – równanie prostej regresji

Fig. 32a. Changes of oaks (*Quercus petraea*) tree ring widths in Goldapia (1871-1986) y(x) – the regression equation

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 **Rys. 32b.** Zmiany szerokości słojów dębu (*Quercus petraea*) w Gołdapi (1871-1986)

 $d_{sr} = 9,999$, $\sigma = 2,1408$

Fig. 32b. Changes of oaks (*Quercus petraea*) tree ring widths in Gołdapia (1871-1986) $d_{sr} = 9,999$, $\sigma = 2,1408$

HAJNÓWKA (1720-1984)

Rys. 33a. Zmiany szerokości słojów dębu (*Quercus petraea*) w Hajnówce (1720-1984) y(x) – równanie prostej regresji

Fig. 33a. Changes of oaks (*Quercus petraea*) tree ring widths in Hajnówka (1720-1984) y(x) – the regression equation

Rys. 33b. Zmiany szerokości słojów dębu (*Quercus petraea*) w Hajnówce (1720-1984) $d_{sr} = 10,001, \sigma = 2,0128$

Fig. 33b. Changes of oaks (*Quercus petraea*) tree ring widths in Hajnówka (1720-1984) $d_{sr} = 10,001, \sigma = 2,0128$

KOSZALIN (1782-1986)

Rys. 34a. Zmiany szerokości słoi dębu (*Quercus petraea*) w Koszalinie (1782-1985) y(x) – równanie prostej regresji

Fig. 34a. Changes of oaks (*Quercus petraea*) tree ring widths in Koszalin (1782-1985) y(x) – the regression equation

Rys. 34b. Zmiany szerokości sło
i dębu (*Quercus petraea*) w Koszalinie (1782-1985)
 $d_{\rm sr}=10,000,\,\sigma=1,9384$

Fig. 34b. Changes of oaks (*Quercus petraea*) tree ring widths in Koszalin (1782-1985) $d_{sr} = 10,000, \sigma = 1,9384$

KRAKÓW (1792-1985)

Rys. 35a. Zmiany szerokości słojów dębu (*Quercus petraea*) w Krakowie (1792-1985) y(x) – równanie prostej regresji

Fig. 35a. Changes of oaks (*Quercus petraea*) tree ring widths in Krakow (1792-1985) y(x) – the regression equation

Rys. 35b. Zmiany szerokości słojów dębu (*Quercus petraea*) w Krakowie (1792-1985) $d_{sr} = 10,000, \sigma = 1,4552$

Fig. 35b. Changes of oaks (*Quercus petraea*) tree ring widths in Krakow (1792-1985) $d_{sr} = 10,000, \sigma = 1,4552$

36. POMORZE WSCHODNIE (966-1985)

Rys. 36a. Zmiany szerokości słojów dębu (*Quercus petraea*) na Pomorzu Wschodnim (966-1985); y(x) – równanie prostej regresji

Fig. 36a. Changes of oaks (*Quercus petraea* tree ring widths in East Pomeranian (966-1985); y(x) – the regression equation

Rys. 36b. Zmiany szerokości słojów dębu (*Quercus petraea*) na Pomorzu Wschodnim (966-1985,); $d_{st} = 9,999$, $\sigma = 1,4018$

Fig. 36b. Changes of oaks (*Quercus petraea* tree ring widths in East Pomeranian (966-1985, $d_{sr} = 9,999$, $\sigma = 1,4018$

POZNAŃ (1836-1986)

- di 1862 15 1 854 1 949 1 967 1 853 13 11 9 7 y = 0,003504x + 3,3045061 848 ወ 1876 φ $R^2 = 0,007879$ 5 1 844 1 836 3 1850 1825 1875 1900 1925 1950 1975 2000

Fig. 37a. Changes of oaks (*Quercus petraea*) tree ring widths in Poznań (1836-1986) y(x) – the regression equation

Rys. 37b. Zmiany szerokości słojów dębu (*Quercus petraea*) w Poznaniu (1836-1986) $d_{sr} = 10,000$, $\sigma = 1,7205$

Fig. 37b. Changes of oaks (*Quercus petraea*) tree ring widths in Poznań (1836-1986) $d_{sr} = 10,000$, $\sigma = 1,7205$

Rys. 38a. Zmiany szerokości słojów dębu (*Quercus petraea*) na Roztoczu (1872-1988) y(x) – równanie prostej regresji

Fig. 38a. Changes of oaks (*Quercus petraea*) tree ring widths in Roztocze (1872-1988) y(x) – the regression equation

Rys. 38b. Zmiany szerokości słojów dębu (*Quercus petraea*) na Roztoczu (1872-1988) $d_{sr} = 9,996, \sigma = 2,2796$

Fig. 38b. Changes of oaks (*Quercus petraea*) tree ring widths in Roztocze (1872-1988) $d_{sr} = 9,996, \sigma = 2,2796$

Rys. 39a. Zmiany szerokości słojow dębu (*Quercus petraea*) w Suwałkach (1861-1986) y(x) – równanie prostej regresji

Fig. 39a. Changes of oaks (*Quercus petraea*) tree ring widths in Suwałki (1861-1986) y(x) – the regression equation

Rys. 39b. Zmiany szerokości słojów dębu (*Quercus petraea*) w Suwałkach (1861-1986) $d_{sr} = 9,997, \sigma = 1,6527$

Fig. 39b. Changes of oaks (*Quercus petraea*) tree ring widths in Suwałki (1861-1986) $d_{sr} = 9,997, \sigma = 1,6527$

Rys. 40a. Zmiany szerokości słojów dębu (Quercus petraea) w Toruniu (1713-1986) y(x) – równanie prostej regresji

Fig. 40a. Changes of oaks (Quercus petraea) tree ring widths in Toruń (1713-1986) y(x) – the regression equation

Fig. 40b. Changes of oaks (Quercus petraea) tree ring widths in Toruń (1713-1986)

 $d_{\rm sr} = 10,001, \, \sigma = 1,6842$

WARSZAWA (1690-1984)

Rys. 41a. Zmiany szerokości słojów dębu (*Quercus petraea*) w Warszawie (1690-1984) y(x) – równanie prostej regresji

Fig. 41a. Changes of oaks (*Quercus petraea*) tree ring widths in Warsaw (1690-1984) y(x) – the regression equation

Rys. 41b. Zmiany szerokości słojów dębu (*Quercus petraea*) w Warszawie (1690-1984) $d_{sr} = 9,997$, $\sigma = 1,5741$

Fig. 41b. Changes of oaks (*Quercus petraea*) tree ring widths in Warsaw (1690-1984) $d_{sr} = 9,997$, $\sigma = 1,5741$

Rys. 42a. Zmiany szerokości słojów dębu (*Quercus petraea*) na Wolinie (1554-1985) y(x) - równanie prostej regresji

Fig. 42a. Changes of oaks (*Quercus petraea*) tree ring widths in Wolin (1554-1985) y(x) – the regression equation

Rys. 42b. Zmiany szerokości słojów dębu (*Quercus petraea*) na Wolinie (1554-1985) $d_{sr} = 10,000, \sigma = 1,5105$

Fig. 42b. Changes of oaks (*Quercus petraea*) tree ring widths in Wolin (1554-1985) $d_{sr} = 10,000, \sigma = 1,5105$

Rys. 43a. Zmiany szerokości słojów dębu (*Quercus petraea*) we Wrocławiu (1727-1986) y(x) – równanie prostej regresji

Fig. 43a. Changes of oaks (*Quercus petraea*) tree ring widths in Wrocław (1727-1986) y(x) – the regression equation

 $d_{sr} = 9,999$, $\sigma = 1,7275$ **Fig. 43b.** Changes of oaks (*Quercus petraea*) tree ring widths in Wrocław (1727-1986) $d_{sr} = 9,999$, $\sigma = 1,7275$

Fig. 44a. Changes of oaks (*Quercus petraea*) tree ring widths in Zielona Góra (1774-1986) y(x) – the regression equation

* Uwaga. Szerokość słojów badanych dębów w Polsce podano w 0,1 mm. Źródło danych: http://www.ncdn.noaa.gov/paleo/treering.htm

UNIWERSYTET WARSZAWSKI WYDZIAŁ GEOGRAFII I STUDIÓW REGIONALNYCH

MARIA STOPA-BORYCZKA, JERZY BORYCZKA

XXXIV. KLIMAT EUROPY PRZESZŁOŚĆ, TERAŹNIEJSZOŚĆ, PRZYSZŁOŚĆ (W KOLEJNYCH 33 TOMACH ATLASU I-1974–XXXIII-2015)

atlas

WSPÓŁZALEŻNOŚCI PARAMETRÓW METEOROLOGICZNYCH I GEOGRAFICZNYCH W POLSCE

Warszawa 2015

VI. REKONSTRUKCJA I NOWE PROGNOZY TEMPERATURY POWIETRZA W POLSCE W TYSIĄCLECIU 1500-2500

Metody badań

Rekonstrukcje i prognozy zmian temperatury powietrza w Polsce w latach 1500-2500 opracowane według cykli wyznaczonych metodą *sinusoid regresji* J. Boryczki (1998).

Wyniki pomiarów y_1, \ldots, y_n , wykonane w dowolnych odstępach czasu t_1, \ldots, t_n , czyli punkty empiryczne (y_i, t_i) aproksymowano kolejnymi sinusoidami regresji o okresie Θ , amplitudzie *b* i fazie *c*, z "krokiem" $\Delta \Theta = 0,1$ roku:

$$y = a_o + b\sin\left(\frac{2\pi}{\Theta}t + c\right) \tag{1}$$

Parametry a_0 , b, c sinusoidy regresji (cyklu) wyznacza się tak, by suma kwadratów odchyleń $\varepsilon_i = y_i - y(t_i)$ punktów empirycznych (t_i, y_i) od jej założonego wykresu była minimalna:

$$\varepsilon^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 \quad - \text{ Min} \tag{2}$$

Zmieniając okres sinusoidy Θ z dowolnym odstępem czasu: $\Theta_1, \Theta_2, \ldots, \Theta_n$ otrzymuje się ciąg liczbowy wariancji resztkowej $\varepsilon_1^2, \varepsilon_2^2, \ldots, \varepsilon_n^2$ (widmo). Okresy Θ_j – to minima lokalne widma – maksima współczynnika korelacji R_i spośród R_1, R_2, \ldots, R_n .

Cykle weryfikowano testem Fishera-Snedecora o 2 i *n*-3 stopniach swobody (test, $F_{obl} > F_{kr}$) (Zieliński, 1972):

$$F_{\rm obl} = \frac{n-3}{2} \frac{R^2}{(1-R^2)} , \qquad R = \sqrt{1 - \frac{\varepsilon^2}{s^2}}$$
(3)

gdzie s^2 – wariancja zmiennej y

Rekonstrukcje i prognozy otrzymano według interferencji k najistotniejszych statystycznie ("najisliniejszych") cykli F(t) i f(t) – bez składnika liniowego (at = 0):

$$F(t) = a_o + at + \sum_{j=1}^k b_j \sin\left(\frac{2\pi}{\Theta_j}t + c_j\right)$$
(4)

Rekonstrukcje i prognozy opracowano dla poszczególnych miesięcy, pór roku i roku na podstawie wyników pomiarów : w Warszawie – z lat 1779-2015, Krakowie – 1826-2017) i Wrocławiu – 1792-2017.

Rekonstrukcje i prognozy zmian temperatury powietrza w latach 1500-2500 przeprowadzono według dwóch rodzajów wypadkowych interferencji cykl :

- 1. ze składnikiem liniowym $F(t) = a_0 + a t + ...$
- 2. bez składnika liniowego -f(t), (*at* =0).

Dokładność aproksymacji wyników pomiarów charakteryzują współczynniki korelacji wielokrotnej *R*.

Okresy Θ – to minima lokalne zamieszczonych widm temperatury powietrza w przedziale $2.1 \le \Theta \le 250$ lat z odstępem Θ co 0,1 roku. Na ogół, spadki wariancji resztkowej ε^2 przy $\Theta \rightarrow 250$ lat świadczą, że istnieją cykle długie, które nie są obecne w widmach temperatury, lecz występują w widmach danych dendrologicznych . Dlatego też w prognozach uwzględniono dodatkowo cykl 178.9 lat (astronomiczny).

W tomie XXXVI. *Atlas współzależności* ... (rozdz. VIII i IX) zweryfikowano prognozy przebiegu rocznego temperatury powietrza w Warszawie w latach 1991-2100 według wzorów T = f(t) - gdy at = 0 i T = F(t) - ze składnikiem liniowym at zamieszczonych w *Atlasie* t. XIV (miesiące, sezony i rok), korzystając z wyników pomiarów w 25-leciu 1991-2015):

- Boryczka J., Stopa-Boryczka M., 2017, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXVI. Postęp badań zmian klimatu Ziemi w ostatnim tysiącleciu (XI-XXI), Wyd. UW, Warszawa, ss. 407
- rozdz. VIII. Weryfikacja prognoz temperatury powietrza w Warszawie w miesiącach, porach roku i roku w 35-leciu 1981-2015 (1984) i 25-leciu 1991-2015 (2000). s. 173
- rozdz. IX. Weryfikacja prognoz zmian temperatury powietrza w Europie w latach 1970-2100 opublikowanych w atlasie t. XVII (2003), T. XIX (2005), T. XX-XXI (2007), S. 199

Porównano średnie wartości temperatury powietrza w różnych przedziałach czasu (miesiące, pory roku, rok) zmierzone w Warszawie na Okęciu (T) z prognozowanymi f(t) na lata 1990-2100:

 Boryczka J., Stopa-Boryczka M., Lorenc H., Kicińska B. Błażek E., Skrzypczuk J., 2000, *Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce*, t. XIV. Pro- gnozy zmian klimatu Warszawy, Wyd. UW, ss. 209 rozdz. VI. Zmiany klimaty Warszawy, 4. Prognoza zmian klimatu Warszawy w XXI wieku

Ponadto zweryfikowano prognozy zmian temperatury powietrza do roku 2100 w różnych miejscach Europy, dotyczących zimy i lata, miesięcy styczeń i lipiec oraz średniej rocznej, opublikowanych w trzech tomach *Atlasu*:

- Boryczka J., Stopa-Boryczka M., Baranowski D., Kirchenstein M., Błażek E., Skrzypczuk J., 2003, Atlas wspólzależności parametrów meteorologicznych i geograficznych w Polsce, t. XVII. Mroźne zimy i upalne lata w Polsce, Wyd. UW, ss. 297
 Zima i lato, rozdz. V Zmiany temperatury powietrza w Europie w XVIII-XX wieku. Prognozy po rok 2100, s. 31-171
- Boryczka J., Stopa-Boryczka M., Pietras K., Bijak S., J., Błażek E., Skrzypczuk J., 2005, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XIX. Cechy termiczne klimatu Europy, Wyd. UW, ss. 184
 Styczeń i lipiec, rozdz. IV. Ochłodzenia i ocieplenia klimatu Europy w ostatnich stuleciach, s. 35-131
- Stopa-Boryczka M., Boryczka J., Bijak S., Cebulski R., Błażek E., Skrzypczuk J., 2007, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t, XX-XXI. Cykliczne zmiany klimatu Europy w ostatnim tysiąc-leciu według danych dendrologicznych, Wyd. UW, ss. 226 Rok, rozdz. III. Ochłodzenia i ocieplenia klimatu Europy w XIX-XXI wieku, s.97-126

6.1 Rekonstrukcja i prognozy zmian temperatury powietrza w Warszawie w tysiącleciu 1500-2500 według pomiarów z lat 1779-2015

Utworzono nową serię średnich miesięcznych wartości temperatury powietrza o liczebności n = 237 lat, łącząc dane z lat 1779-1998 (Warszawa-Obserwatorium, seria homogeniczna, H. Lorenc) i 1999-2015 (Warszawa-Okęcie).

Uwzględniono okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza gdzie ε^2 – wariancja resztkowa, *R* – współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora (tab. 1-17, rys. 1-51).

Zmiany temperatury powietrza w Warszawie w tysiącleciu 1500-2500 (miesiące I, II, ..., XII)

STYCZEŃ (I)

Tabela 1. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w styczniu, w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 1. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in January in years 1779-2015, (ϵ^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = -26.661941 + 0.012200 t + \dots ; R = 0.499199$								
Θ	b	С	ε ²	R	F _{obl}			
3,3	0,893039	-1,572338	11,658	0,186	4,245			
7,8	0,825048	-0,157752	11,723	0,171	3,564			
9,2	0,991399	-1,595346	11,618	0,195	4,668			
11,5	0,621747	0,268202	11,891	0,124	1,840			
22,4	0,614503	1,048818	11,892	0,123	1,830			
27,0	0,327573	-1,110038	12,001	0,079	0,737			
41,6	0,450096	1,553101	11,940	0,106	1,346			
69,7	0,408544	-2,195130	11,871	0,130	2,043			
118,6	0,681712	1,827870	11,599	0,199	4,869			
178.9	0.226912	2.713731	11.979	0.089	0.956			

Rys. 1. Widmo temperatury powietrza w Warszawie w styczniu w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 1. Spectrum of air temperature in Warsaw in January in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 2. Zmiany temperatury powietrza w Warszawie w styczniu w latach 1700-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 2.** Air temperature changes in Warsaw in January in the years 1700-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 2a. Zmiany temperatury powietrza w Warszawie w styczniu w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 2a.** Air temperature changes in Warsaw in January in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1950-2015)

Rys. 2b. Zmiany temperatury powietrza w Warszawie w styczniu w latach 2015-2215, F(t) – wartości obliczone (z prognozą na lata 2016-2215) **Fig. 2b.** Air temperature changes in Warsaw in January in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215

Rys. 3. Zmiany temperatury powietrza w Warszawie w styczniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 3.** Air temperature changes in Warsaw in January in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 3a. Zmiany temperatury powietrza w Warszawie w styczniu w latach 1950-2200 , f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 3a.** Air temperature changes in Warsaw in January in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1951-2015)

Rys. 3b. Zmiany temperatury powietrza w Warszawie w styczniu w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500) **Fig. 3b.** Air temperature changes in Warsaw in January in the years 2015-2500, f(t) – calculated values

(with a forecast for the years 2016-2500

LUTY (II)

Tabela 2. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w lutym, w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 2. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in February in years 1779-2015, (ϵ^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = -17.859297 + 0.008225 t + \dots ; R = 0.475100$						
Θ	b	с	ϵ^2	R	$F_{\rm obl}$	
3,8	0,709653	1,380982	10,452	0,154	2,880	
5,2	0,772345	-0,084968	10,403	0,168	3,451	
8,3	0,940401	1,915582	10,287	0,198	4,826	
14,0	0,845309	0,836635	10,341	0,185	4,182	
15,2	0,545009	-2,984844	10,545	0,123	1,809	
18,1	0,545568	0,938818	10,528	0,129	2,003	
22,3	0,402748	-1,080805	10,586	0,106	1,343	
29,6	0,447472	-1,468656	10,596	0,101	1,230	
113,9	0,728428	-2,581096	10,453	0,154	2,868	
178,9	0,190156	0,711293	10,702	0,019	0,044	

Rys. 5. Zmiany temperatury powietrza w Warszawie w lutym w latach 1700-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 5.** Air temperature changes in Warsaw in February in the years 1700-2200. Ft – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 5a. Zmiany temperatury powietrza w Warszawie w lutym w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); Ti – zmierzone na Okęciu (1951-2015) **Fig. 5a.** Air temperature changes in Warsaw in February in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200), Ti – values measured in Okęcie (1951-2015)

Rys. 5b. Zmiany temperatury powietrza w Warszawie w lutym w latach 2015-2215 , F(t) – wartości obliczone (z prognozą na lata 2016-2215)

Fig. 5b. Air temperature changes in Warsaw in February in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215

Rys. 6. Zmiany temperatury powietrza w Warszawie w lutym w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 6.** Air temperature changes in Warsaw in February in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 6a. Zmiany temperatury powietrza w Warszawie w styczniu w latach 1950-2200 , f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 6a.** Air temperature changes in Warsaw in January in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1951-2015)

Rys. 6b. Zmiany temperatury powietrza w Warszawie w lutym w latach 2015-2515 , f(t) – wartości obliczone (z prognozą na lata 2016-2515)

Fig. 6b. Air temperature changes in Warsaw in February n the years 2015-2215, f(t) – calculated values (with a forecast for the years 2016-2515

MARZEC (III)

Tabela 3. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w marcu, w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 3. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in March in years 1779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = -13,616101 + 0,007933 t + \dots ; R = 0,554855$						
Θ	b	с	ϵ^2	R	$F_{\rm obl}$	
4,0	0,675738	-2,031860	6,622	0,188	4,338	
7,8	0,753499	0,316330	6,553	0,213	5,631	
11,1	0,679574	-0,936097	6,598	0,197	4,785	
19,7	0,501169	0,099611	6,689	0,160	3,107	
24,0	0,285052	2,235386	6,784	0,108	1,404	
37,3	0,471306	1,636125	6,761	0,123	1,812	
47,8	0,309835	1,129106	6,769	0,118	1,670	
82,5	0,748354	0,511209	6,519	0,224	6,279	
126,0	0,520667	1,893466	6,680	0,164	3,271	
178,9	0,471861	2,411035	6,843	0,056	0,371	

Fig. 7. Spectrum of air temperature in Warsaw in March in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 8. Zmiany temperatury powietrza w Warszawie w marcu w latach 1700-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 8.** Air temperature changes in Warsaw in March in the years 1700-2200. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 8a. Zmiany temperatury powietrza w Warszawie w marcu w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 8a.** Air temperature changes in Warsaw in March in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 8b. Zmiany temperatury powietrza w Warszawie w marcu w latach 2015-2215 , F(t) – wartości obliczone (z prognozą na lata 2016-2215)

Fig. 8b. Air temperature changes in Warsaw in March in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215

Rys. 9. Zmiany temperatury powietrza w Warszawie w marcu w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 9.** Air temperature changes in Warsaw in March in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 9a. Zmiany temperatury powietrza w Warszawie w marcu w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 9a.** Air temperature changes in Warsaw in March in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 9b. Zmiany temperatury powietrza w Warszawie w marcu w latach 2015-2515 , f(t) – wartości obliczone (z prognozą na lata 2016-2515)

Fig. 9b. Air temperature changes in Warsaw in March in the years 2015-2515, f(t) – calculated values (with a forecast for the years 2016-2515

KWIECIEŃ (IV)

Tabela 4. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w kwietniu, w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 4. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in April in years 1779-2015, $(\epsilon^2 - \text{rest variance}, R - \text{multiple correlation coefficient}, F_{obl} - F\text{-test})$

$F(t) = -5,142801 + 0,006734 t + \dots ; R = 0,551846$						
Θ	b	с	ϵ^2	R	$F_{\rm obl}$	
5,3	0,428979	-0,278024	3,798	0,156	2,956	
8,1	0,388023	2,169138	3,821	0,136	2,225	
9,5	0,369097	-2,313739	3,821	0,136	2,225	
15,1	0,354810	0,668963	3,816	0,140	2,383	
23,7	0,704965	2,088525	3,618	0,266	8,998	
30,0	0,464994	2,012326	3,755	0,188	4,346	
41,7	0,330939	1,601704	3,816	0,140	2,383	
58,6	0,324090	0,286687	3,804	0,151	2,764	
117,6	0,276110	0,930817	3,845	0,111	1,471	
178,9	0,352233	1,722310	3,847	0,108	1,409	

Rys. 10. Widmo temperatury powietrza w Warszawie w kwietniu w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 10. Spectrum of air temperature in Warsaw in April in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0.1$ year)

Rys. 11. Zmiany temperatury powietrza w Warszawie w kwietniu w latach 1600-2200 , F(t) – wartości obliczone (z prognozą na lata 2016-2200); *T* – wartości zmierzone (1779-2015). **Fig. 11.** Air temperature changes in Warsaw in April in the years 1600-2200. *Ft*) – calculated values (with a forecast for the years 2016-2200); *T* – values measured (1779-2015)

Rys. 11a. Zmiany temperatury powietrza w Warszawie w kwietniu w latach 1950-2200 , F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 11a.** Air temperature changes in Warsaw in April in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 11b. Zmiany temperatury powietrza w Warszawie w kwietniu w latach 2015-2215, F(t) – wartości obliczone (z prognozą na lata 2016-2215) **Fig. 11b.** Air temperature changes in Warsaw in April in the years 2015-2215, F(t) – calculated values

(with a forecast for the years 2016-2215)

Rys. 12. Zmiany temperatury powietrza w Warszawie w kwietniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). Fig. 12. Air temperature changes in Warsaw in April in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 12a. Zmiany temperatury powietrza w Warszawie w kwietniu w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 12a.** Air temperature changes in Warsaw in April in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 12b. Zmiany temperatury powietrza w Warszawie w kwietniu w latach 2015-2515 , f(t) – wartości obliczone (z prognozą na lata 2016-2515)

Fig. 12b. Air temperature changes in Warsaw in April in the years 2015-2515, f(t) – calculated values (with a forecast for the years 2016-2515)

MAJ (V)

Tabela 5. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w maju w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 5. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in May in years 1779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

F	(t) = 5,269454 + 0,00				
Θ	b	С	ε ²	R	$F_{\rm obl}$
5,9	0,380966	0,411954	3,331	0,146	2,598
8,2	0,294853	-1,024626	3,356	0,119	1,696
10,1	0,366561	0,837486	3,34	0,137	2,272
12,7	0,402362	-0,354113	3,316	0,161	3,146
21,3	0,293088	-1,670283	3,353	0,122	1,803
29,6	0,238985	2,354023	3,372	0,097	1,125
50,2	0,293490	-2,846691	3,348	0,128	1,983
72,1	0,275945	-2,944678	3,338	0,139	2,344
103,7	0,170569	-0,857423	3,382	0,080	0,772
178,9	0,428489	1,757493	3,284	0,188	4,331

Rys. 13. Widmo temperatury powietrza w Warszawie w maju w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 13. Spectrum of air temperature in Warsaw in Mayin the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 14. Zmiany temperatury powietrza w Warszawie w maju w latach 1600-2200 , F(t) – wartości obliczone (z prognozą na lata 2016-2200); *T* – wartości zmierzone (1779-2015). **Fig. 14.** Air temperature changes in Warsaw in May in the years 1600-2200. *Ft*) – calculated values (with a forecast for the years 2016-2200); *T* – values measured (1779-2015)

Rys. 14a. Zmiany temperatury powietrza w Warszawie w maju w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 14a.** Air temperature changes in Warsaw in May in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 14b. Zmiany temperatury powietrza w Warszawie w maju w latach 2015-2215 , F(t) – wartości obliczone (z prognozą na lata 2016-2215)

Fig. 14b. Air temperature changes in Warsaw in May in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215)

Rys. 15. Zmiany temperatury powietrza w Warszawie w maju w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 15.** Air temperature changes in Warsaw in May in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 15a. Zmiany temperatury powietrza w Warszawie w maju w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 15a.** Air temperature changes in Warsaw in May in the years 1950-2200. f(t) – calculated

Rys. 15b. Zmiany temperatury powietrza w Warszawie w maju w latach 2015-2515, f(t) – wartości obliczone (z prognozą na lata 2016-2515) **Fig. 15b.** Air temperature changes in Warsaw in May in the years 2015-2515, f(t) – calculated values

Fig. 15b. Air temperature changes in Warsaw in May in the years 2015-2515, f(t) – calculated values (with a forecast for the years 2016-2515

CZERWIEC (VI)

Tabela 6. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w czerwcu w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 6. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in June i n years 1779-2015 (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

F	t(t) = 13,121532 + 0,0				
Θ	b	с	ε ²	R	$F_{\rm obl}$
4,1	0,311594	-2,595117	2,057	0,147	2,621
7,1	0,330904	1,489130	2,051	0,157	2,975
10,2	0,269768	1,674155	2,069	0,126	1,919
15,3	0,268398	-1,552697	2,056	0,149	2,680
19,8	0,326115	-3,093194	2,052	0,155	2,916
30,3	0,295230	1,423828	2,056	0,149	2,680
44,4	0,159316	1,485652	2,082	0,099	1,167
56,8	0,143804	-0,248260	2,077	0,110	1,455
85,5	0,526650	2,836182	2,009	0,211	5,515
178,9	0,349450	0,217507	2,079	0,106	1,339

Rys. 16. Widmo temperatury powietrza w Warszawie w czerwcu w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 16. Spectrum of air temperature in Warsaw in June in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0.1$ year)

Rys. 17. Zmiany temperatury powietrza w Warszawie w czerwcu w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2016-2200); *T* – wartości zmierzone (1779-2015). **Fig. 17.** Air temperature changes in Warsaw in June in the years 1500-2500. *Ft*) – calculated values (with a forecast for the years 2016-2200); *T* – values measured (1779-2015)

Rys. 17a. Zmiany temperatury powietrza w Warszawie w czerwcu w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 17a.** Air temperature changes in Warsaw in June in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 17b. Zmiany temperatury powietrza w Warszawie w czerwcu w latach 2015-2215 , F(t) – wartości obliczone (z prognozą na lata 2016-2215)

Fig. 17b. Air temperature changes in Warsaw in June in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215)

Rys. 18. Zmiany temperatury powietrza w Warszawie w czerwcu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 18.** Air temperature changes in Warsaw in June in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 18a. Zmiany temperatury powietrza w Warszawie w czerwcu w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 18a.** Air temperature changes in Warsaw in June in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 18b. Zmiany temperatury powietrza w Warszawie w czerwcu w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2515) **Fig. 18b.** Air temperature changes in Warsaw in June in the years 2015-2500, f(t) – calculated values

Fig. 18b. Air temperature changes in Warsaw in June in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2515)

LIPIEC (VII)

Tabela 7. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w lipcu w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 7. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in July i n years 1779-2015, $(\epsilon^2 - \text{rest variance}, R - \text{multiple correlation coefficient}, F_{obl.} - F-test)$

	$F(t) = 13,01184 + 0,003012 t + \dots$; $R = 0,531311$							
Θ	b	с	ε ²	R	$F_{\rm obl}$			
3,9	0,53423	-0,65613	2,049	0,254	8,178			
5,1	0,44177	-2,23140	2,095	0,209	5,396			
7,1	0,36442	1,46789	2,130	0,166	3,360			
11,9	0,22417	-0,65347	2,165	0,108	1,390			
16,3	0,21178	1,63563	2,169	0,099	1,169			
22,0	0,16333	-1,33312	2,168	0,101	1,224			
36,2	0,20441	-0,52013	2,162	0,114	1,557			
70,5	0,54538	-1,65330	2,020	0,279	9,996			
115,3	0,19164	-1,94130	2,168	0,101	1,224			
178,9	0,24163	0,60784	2,167	0,103	1,280			

Rys. 19. Widmo temperatury powietrza w Warszawie w lipcu w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 19. Spectrum of air temperature in Warsaw in July the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 20. Zmiany temperatury powietrza w Warszawie w lipcu w latach 1600-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 20.** Air temperature changes in Warsaw in July in the years 1600-2200. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 20a. Zmiany temperatury powietrza w Warszawie w lipcu w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 20a.** Air temperature changes in Warsaw in July in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 20b. Zmiany temperatury powietrza w Warszawie w lipcu w latach 2015-2500 , F(t) – wartości obliczone (z prognozą na lata 2016-2215)

Fig. 20b. Air temperature changes in Warsaw in July in the years 2015-2500, F(t) – calculated values (with a forecast for the years 2016-2215)

Rys. 21. Zmiany temperatury powietrza w Warszawie w lipcu w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 21.** Air temperature changes in Warsaw in July in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 21a. Zmiany temperatury powietrza w Warszawie w lipcu w latach 1950-2200 , f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 21a.** Air temperature changes in Warsaw in July in the years 1950-2200. f(t) – calculated valu21s (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 21b. Zmiany temperatury powietrza w Warszawie w lipcu w latach 2015-2515, f(t) – wartości obliczone (z prognozą na lata 2016-2515)

Fig. 21b. Air temperature changes in Warsaw in July in the years 2015-2515, f(t) – calculated values (with a forecast for the years 2016-2515)

SIERPIEŃ (VIII)

Tabela 8. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w sierpniu w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 8. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in August i n years 1779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = 15,904005$ 0,000968 $t + \dots$ $R = 0,541064$						
Θ	b	с	ϵ^2	R	$F_{\rm obl}$	
3,9	0,377678	-0,932283	2,286	0,180	3,959	
5,7	0,344937	1,119649	2,300	0,162	3,213	
10,2	0,328463	-0,578129	2,300	0,162	3,213	
15,8	0,413317	-2,256306	2,281	0,186	4,227	
23,4	0,344036	1,358768	2,307	0,153	2,844	
32,2	0,212982	-0,281279	2,340	0,097	1,133	
52,1	0,245417	-0,766350	2,305	0,156	2,949	
72,4	0,473534	2,959457	2,219	0,246	7,656	
108,4	0,092564	-1,634453	2,351	0,069	0,573	
178,9	0,557612	0,870403	2,196	0,265	8,978	

Fig. 22. Spectrum of air temperature in Warsaw in August in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 23. Zmiany temperatury powietrza w Warszawie w sierpniu w latach 1500-2500, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 23.** Air temperature changes in Warsaw in August in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 23a. Zmiany temperatury powietrza w Warszawie w sierpniu w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 23a.** Air temperature changes in Warsaw in August in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 23b. Zmiany temperatury powietrza w Warszawie w sierpniu w latach 2015-2500, F(t) – wartości obliczone (z prognozą na lata 2016-2500) **Fig. 23b.** Air temperature changes in Warszaw in August in the years 2015 2500. F(t) – calculated values

Fig. 23b. Air temperature changes in Warsaw in August in the years 2015-2500, F(t) – calculated values (with a forecast for the years 2016-2500)

Rys. 24. Zmiany temperatury powietrza w Warszawie w sierpniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 24.** Air temperature changes in Warsaw in August in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 24a. Zmiany temperatury powietrza w Warszawie w sierpniu w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 24a.** Air temperature changes in Warsaw in August in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 24b. Zmiany temperatury powietrza w Warszawie w sierpniu w latach 2015-2515 , f(t) – wartości obliczone (z prognozą na lata 2016-2515)

Fig. 24b. Air temperature changes in Warsaw in August in the years 2015-2515, f(t) – calculated values (with a forecast for the years 2016-2515)

WRZESIEŃ (IX)

Tabela 9. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie we wrześniu w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 9. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in September i n years 1779-2015, (ϵ^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = 11,123718 + 0,001253 t + \dots$; $R = 0,466054$					
Θ	b	с	ε ²	R	$F_{\rm obl}$
4,3	0,256312	2,870359	1,996	0,131	2,056
5,7	0,330394	2,925937	1,976	0,164	3,276
8,0	0,336231	-2,972869	1,971	0,171	3,585
9,2	0,263188	-1,606922	1,992	0,138	2,298
20,4	0,358774	-0,557564	1,952	0,197	4,773
28,7	0,238150	1,895769	1,988	0,145	2,541
44,9	0,218028	2,041009	2,002	0,119	1,694
56,9	0,275780	0,471847	1,985	0,150	2,724
76,7	0,345555	-0,730818	1,965	0,180	3,958
178,9	0,192190	1,586445	2,005	0,112	1,514

Fig. 25. Spectrum of air temperature in Warsaw in September in the years 1779-2015 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 26. Zmiany temperatury powietrza w Warszawie we wrześniu w latach 1500-2500, F(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 26.** Air temperature changes in Warsaw in September in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 26a. Zmiany temperatury powietrza w Warszawie we wrześniu w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 26a.** Air temperature changes in Warsaw in September in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 26b. Zmiany temperatury powietrza w Warszawie we wrześniu w latach 2015-2500, F(t) – wartości obliczone (z prognozą na lata 2016-2500) **Fig. 26b.** Air temperature changes in Warsaw in September in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2500)

Rys. 27. Zmiany temperatury powietrza w Warszawie we wrześniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 27.** Air temperature changes in Warsaw in September in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 27a. Zmiany temperatury powietrza w Warszawie we wrześniu w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); Ti – zmierzone na Okęciu (1951-2015) **Fig. 27a.** Air temperature changes in Warsaw in September in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), Ti – values measured in Okęcie (1950-2015)

Rys. 27b. Zmiany temperatury powietrza w Warszawie w wrześniu w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500)

Fig. 27b. Air temperature changes in Warsaw in September in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500)

PAŹDZIERNIK (X)

Tabela 10. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w październiku w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 10. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in October i n years 1779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = 2,957628$ 0,002717 $t + \dots$ $R = 0,460439$						
Θ	b	с	ε ²	R	$F_{\rm obl}$	
4,7	0,592788	-1,444912	2,790	0,248	7,738	
8,1	0,277770	-3,067112	2,928	0,122	1,788	
12,0	0,352056	1,955035	2,902	0,154	2,866	
15,9	0,331373	2,910631	2,911	0,143	2,490	
23,3	0,336502	0,336559	2,913	0,141	2,407	
34,0	0,497551	-2,841881	2,852	0,201	4,993	
51,0	0,257225	-0,179574	2,938	0,107	1,378	
77,5	0,170726	-2,439727	2,946	0,094	1,053	
130,9	0,186343	0,766904	2,938	0,107	1,378	
178,9	0,091061	2,384405	2,962	0,059	0,407	

Rys. 28. Widmo temperatury powietrza w Warszawie w październiku w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku) **Fig. 28.** Spectrum of air temperature in Warsaw in October in the years 1779-2015 (in the strip 2,0-250

Fig. 28. Spectrum of air temperature in Warsaw in October in the years 1779-2015 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 29. Zmiany temperatury powietrza w Warszawie w październiku w latach 1500-2500, F(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 29.** Air temperature changes in Warsaw in October in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 29a. Zmiany temperatury powietrza w Warszawie w październiku w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 29a.** Air temperature changes in Warsaw in October in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 29b. Zmiany temperatury powietrza w Warszawie w październiku w latach 2015-2500, F(t) – wartości obliczone (z prognozą na lata 2016-2500) **Fig. 29b.** Air temperature changes in Warszw, in October, in the years 2015-2500, F(t) – calculated

Fig. 29b. Air temperature changes in Warsaw in October in the years 2015-2500, F(t) – calculated values (with a forecast for the years 2016-2500)

Rys. 30. Zmiany temperatury powietrza w Warszawie w październiku w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 30.** Air temperature changes in Warsaw in October in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 30a. Zmiany temperatury powietrza w Warszawie w październiku w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); Ti – zmierzone na Okęciu (1951-2015) **Fig. 30a.** Air temperature changes in Warsaw in October in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), Ti – values measured in Okęcie (1950-2015)

Rys. 30b. Zmiany temperatury powietrza w Warszawie w październiku w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500)

Fig. 30b. Air temperature changes in Warsaw in October in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500)

LISTOPAD (XI)

Tabela 11. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w listopadzie w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora) **Table 11.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in November i n years 1779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = -13,374038 + 0,008345 t + \dots ; R = 0,558577$							
Θ	b	с	ε ²	R	$F_{\rm obl}$		
4,4	0,578513	-2,082499	4,187	0,197	4,771		
6,5	0,550711	1,419779	4,206	0,185	4,214		
10,6	0,444053	2,845683	4,230	0,170	3,518		
12,5	0,405461	1,485269	4,246	0,159	3,058		
26,9	0,479891	-2,903350	4,207	0,185	4,185		
38,7	0,380676	1,877239	4,251	0,155	2,915		
47,1	0,215306	2,530411	4,319	0,092	1,003		
62,1	0,331020	-1,107531	4,256	0,151	2,772		
90,9	0,164445	2,212001	4,335	0,069	0,562		
178,9	0,454592	1,963825	4,226	0,172	3,633		

Rys. 31. Widmo temperatury powietrza w Warszawie w listopadzie w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 31. Spectrum of air temperature in Warsaw in November in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 32. Zmiany temperatury powietrza w Warszawie w listopadzie w latach 1600-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 32.** Air temperature changes in Warsaw in November in the years 1600-2200. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 32a. Zmiany temperatury powietrza w Warszawie w listopadzie w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 32a.** Air temperature changes in Warsaw in November in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 32b. Zmiany temperatury powietrza w Warszawie w listopadzie w latach 2015-2215, F(t) – wartości obliczone (z prognozą na lata 2016-2215) **Fig. 32b.** Air temperature changes in Warszaw in November in the years 2015 2215. F(t) – calculated

Fig. 32b. Air temperature changes in Warsaw in November in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215)

Rys. 33. Zmiany temperatury powietrza w Warszawie w listopadzie w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 33.** Air temperature changes in Warsaw in November in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 33a. Zmiany temperatury powietrza w Warszawie w listopadzie w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); Ti – zmierzone na Okęciu (1951-2015) **Fig. 33a.** Air temperature changes in Warsaw in November in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), Ti – values measured in Okęcie (1950-2015)

Rys. 33b. Zmiany temperatury powietrza w Warszawie w listopadzie w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500)

Fig. 33b. Air temperature changes in Warsaw in November in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500)

GRUDZIEŃ (XII)

Tabela 12. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w grudniu w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 12. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in December i n years 1779-2015, (ϵ^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = -23,215321 + 0,011385 t + \dots ; R = 0,521181$						
Θ	b	с	ε ²	R	$F_{\rm obl}$	
5,2	0,798205	0,257902	9,114	0,187	4,282	
8,2	0,816046	-2,432625	9,055	0,203	5,082	
10,1	0,614164	-1,560694	9,225	0,152	2,805	
15,0	0,740751	-1,924443	9,133	0,181	4,026	
18,0	0,542572	-1,510890	9,191	0,163	3,253	
20,3	0,428702	0,857632	9,29	0,127	1,956	
35,5	0,497382	2,459926	9,311	0,118	1,684	
78,8	0,374445	-0,214951	9,283	0,130	2,047	
123,9	0,178003	-0,042004	9,395	0,072	0,610	
178,9	0,447598	2,214386	9,332	0,109	1,414	

Rys. 34. Widmo temperatury powietrza w Warszawie w grudniu w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku) **Fig. 34.** Spectrum of air temperature in Warsaw in December in the years 1779-2015 (in the strip

2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 35. Zmiany temperatury powietrza w Warszawie w grudniu w latach 1600-2200 , F(t) – wartości obliczone (z prognozą na lata 2016-2200); *T* – wartości zmierzone (1779-2015). **Fig. 35.** Air temperature changes in Warsaw in December in the years 1600-2200. *Ft*) – calculated values (with a forecast for the years 2016-2200); *T* – values measured (1779-2015)

Rys. 35a. Zmiany temperatury powietrza w Warszawie w grudniu w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 35a.** Air temperature changes in Warsaw in December in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 35b. Zmiany temperatury powietrza w Warszawie w grudniu w latach 2015-2215, F(t) – wartości obliczone (z prognozą na lata 2016-2215) **Fig. 35b.** Air temperature charace in Warsaw in December in the years 2015-2215, F(t) – calculated

Fig. 35b. Air temperature changes in Warsaw in December in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215

Rys. 36. Zmiany temperatury powietrza w Warszawie w grudniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 36.** Air temperature changes in Warsaw in December in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 36a. Zmiany temperatury powietrza w Warszawie w grudniu w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 36a.** Air temperature changes in Warsaw in December in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Fig. 36b. Air temperature changes in Warsaw in December in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500)

Zmiany temperatury powietrza w Warszawie w tysiącleciu 1500-2500 (pory roku, rok)

WIOSNA (III-V)

Tabela 13. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie wiosną w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 13. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in spring in years 1779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = -2.513870 + 0.005287 t + \dots ; R = 0.602645$							
Θ	b	с	ϵ^2	R	F_{obl}		
4,0	0,348527	-1,901137	2,105	0,169	3,478		
7,8	0,338290	0,003243	2,107	0,166	3,362		
12,8	0,350094	0,324643	2,096	0,181	4,002		
19,3	0,191380	0,844771	2,128	0,134	2,160		
23,9	0,382931	0,118414	2,076	0,205	5,182		
29,9	0,295576	0,424110	2,114	0,156	2,959		
58,0	0,150863	-1,619033	2,140	0,111	1,483		
83,2	0,352335	1,163469	2,090	0,188	4,354		
116,6	0,410779	0,428254	2,113	0,158	3,016		
178,9	0,496662	2,026630	2,125	0,139	2,330		

Fig. 37. Spectrum of air temperature in Warsaw in spring in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 38. Zmiany temperatury powietrza w Warszawie wiosną w latach 1600-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 38.** Air temperature changes in Warsaw in spring in the years 1600-2200. Ft – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 38a. Zmiany temperatury powietrza w Warszawie wiosną w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 38a.** Air temperature changes in Warsaw in spring in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 38b. Zmiany temperatury powietrza w Warszawie wiosną w latach 2015-2215 , F(t) – wartości obliczone (z prognozą na lata 2016-2215)

Fig. 38b. Air temperature changes in Warsaw in spring in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215)

Rys. 39. Zmiany temperatury powietrza w Warszawie wiosną w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 39.** Air temperature changes in Warsaw in spring in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 39a. Zmiany temperatury powietrza w Warszawie wiosną w latach 1950-2200 , f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 39a.** Air temperature changes in Warsaw in spring in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 39b. Zmiany temperatury powietrza w Warszawie wiosną w latach 2015-2500 , f(t) – wartości obliczone (z prognozą na lata 2016-2500)

Fig. 39b. Air temperature changes in Warsaw in spring in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500

LATO (VI-VIII)

Tabela 14. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w lecie w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 14. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in summer in years 1779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = 14.083182 + 0.001975 t + \dots R = 0.590157$						
Θ	b	с	ε ²	R	$F_{\rm obl}$	
3,9	0,374460	-0,815061	1,052	0,252	8,065	
7,1	0,318813	1,395583	1,076	0,206	5,242	
15,6	0,264537	0,934225	1,090	0,173	3,653	
19,1	0,198072	-0,341803	1,103	0,135	2,213	
30,9	0,149828	3,102266	1,107	0,122	1,777	
37,2	0,124163	1,852935	1,105	0,129	1,995	
54,6	0,152919	-2,669620	1,096	0,157	2,984	
73,8	0,462745	-0,331330	1,012	0,315	13,068	
114,3	0,011213	-1,987361	1,117	0,077	0,700	
178,9	0,336280	0,633517	1,069	0,220	6,052	

Fig. 40. Spectrum of air temperature in Warsaw in summer in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 41. Zmiany temperatury powietrza w Warszawie w lecie w latach 1500-2500, F(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 41.** Air temperature changes in Warsaw in summer in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 41a. Zmiany temperatury powietrza w Warszawie w lecie w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 41a.** Air temperature changes in Warsaw in summer in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 41b. Zmiany temperatury powietrza w Warszawie w lecie w latach 2015-2500, F(t) – wartości obliczone (z prognozą na lata 2016-2500)

Fig. 41b. Air temperature changes in Warsaw in summer in the years 2015-2500, F(t) – calculated values (with a forecast for the years 2016-2500)

Rys. 42. Zmiany temperatury powietrza w Warszawie w lecie w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 42.** Air temperature changes in Warsaw in summer in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 42a. Zmiany temperatury powietrza w Warszawie w lecie w latach 1950-2200 , f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 42a.** Air temperature changes in Warsaw in summer in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 42b. Zmiany temperatury powietrza w Warszawie w lecie w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500) **Fig. 42b.** Air temperature changes in Warsaw in summer in the years 2015-2500, f(t) – calculated values

Fig. 42b. Air temperature changes in Warsaw in summer in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500)

JESIEŃ (IX-XI)

Tabela 15. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie jesienią w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 15. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in autumn n years 1 779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = -1.135666 0.004831 t + \dots \qquad R = 0.546270$							
Θ	b	с	ε ²	R	$F_{\rm obl}$		
4,7	0,360353	-1,431111	1,211	0,227	6,449		
6,4	0,293835	-1,935058	1,234	0,183	4,120		
10,6	0,188804	2,713540	1,257	0,125	1,876		
15,6	0,228174	2,179851	1,248	0,150	2,744		
23,3	0,251999	0,503913	1,242	0,165	3,330		
37,0	0,225785	0,123858	1,242	0,165	3,330		
59,9	0,194540	-2,125116	1,242	0,165	3,330		
84,0	0,100544	0,019486	1,275	0,039	0,177		
120,2	0,098142	2,109809	1,274	0,048	0,270		
178,9	0,220692	1,383849	1,243	0,163	3,232		

Fig. 43. Spectrum of air temperature in Warsaw in autumn in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 44. Zmiany temperatury powietrza w Warszawie w jesieni w latach 1600-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 44.** Air temperature changes in Warsaw in Autumn in the years 1600-2200. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 44a. Zmiany temperatury powietrza w Warszawie w jesieni w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 44a.** Air temperature changes in Warsaw in Autumn in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 44b. Zmiany temperatury powietrza w Warszawie w jesieni w latach 2015-2215 , F(t) – wartości obliczone (z prognozą na lata 2016-2215)

Fig. 44b. Air temperature changes in Warsaw in Autumn in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215)

Rys. 45. Zmiany temperatury powietrza w Warszawie w jesieni w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 45.** Air temperature changes in Warsaw in Autumn in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 45a. Zmiany temperatury powietrza w Warszawie w jesieni latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 45a.** Air temperature changes in Warsaw in Autumn in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 45b. Zmiany temperatury powietrza w Warszawie w jesieni w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500)

Fig. 45b. Air temperature changes in Warsaw in Autumn in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500)

ZIMA (XII-II)

Tabela 16. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w zimie w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 16. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in winter i n years 1779-2015, (ϵ^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = -1.135666 + 0.004831 t + \dots R = 0.546270$						
Θ	b	с	ε ²	R	$F_{\rm obl}$	
3,3	0,572119	-1,333062	5,450	0,172	3,629	
5,2	0,632682	-0,658662	5,409	0,192	4,555	
8,3	0,830451	1,932767	5,280	0,245	7,561	
15,3	0,463434	0,873822	5,493	0,149	2,673	
18,1	0,421194	1,416745	5,490	0,150	2,739	
22,3	0,306717	-1,492471	5,566	0,095	1,084	
41,6	0,313256	1,783268	5,561	0,100	1,191	
77,4	0,285585	-3,046547	5,499	0,145	2,541	
118,5	0,532814	1,734579	5,427	0,184	4,147	
178,9	0,290397	2,146905	5,561	0,100	1,191	

Rys. 46. Widmo temperatury powietrza w Warszawie w zimie w latach 1779-2015 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 46. Spectrum of air temperature in Warsaw in winter in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0.1$ year)

Rys. 47. Zmiany temperatury powietrza w Warszawie w zimie w latach 1600-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 47.** Air temperature changes in Warsaw in Winter in the years 1600-2200. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 47a. Zmiany temperatury powietrza w Warszawie w zimie w latach 1950-2300, F(t) – wartości obliczone (z prognozą na lata 2016-2300); T_i – zmierzone na Okęciu (1951-2015) **Fig. 47a.** Air temperature changes in Warsaw in Winter in the years 1950-2300. F(t) – calculated values (with a forecast for the years 2016-2300); T_i – values measured in Okęcie (1951-2015)

Rys. 47b. Zmiany temperatury powietrza w Warszawie w zimie w latach 2015-2315, F(t) – wartości obliczone (z prognozą na lata 2016-2315) **Fig. 47b.** Air temperature changes in Warsaw in Winter in the years 2015-2315, F(t) – calculated values (with a forecast for the years 2016-2315)

Rys. 48. Zmiany temperatury powietrza w Warszawie w zimie w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); *T* – wartości zmierzone (1779-2015). **Fig. 48.** Air temperature changes in Warsaw in Winter in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); *T* – values measured (1779-2015)

Rys. 48a. Zmiany temperatury powietrza w Warszawie w zimie w latach 1950-2300, f(t) – wartości obliczone (z prognozą na lata 2016-2300); Ti – zmierzone na Okęciu (1951-2015) **Fig. 48a.** Air temperature changes in Warsaw in Winter in the years 1950-2300. f(t) – calculated values (with a forecast for the years 2016-2300), Ti – values measured in Okęcie (1950-2015)

Rys. 48b. Zmiany temperatury powietrza w Warszawie w zimie w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500) **Fig. 48b.** Air temperature changes in Warsaw in Winter in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500)

ROK (I-XII)

Tabela 17. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Warszawie w roku w latach 1779-2015 (ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora)

Table 17. Periods Θ , amplitudes *b* and phases *c* of air temperature in Warsaw in year i n years 1779-2015, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

$F(t) = -4.223020 + 0.006302 t + \dots ; R = 0.615894$						
Θ	b	с	ε ²	R	$F_{\rm obl}$	
5,5	0,209272	-1,444850	0,969	0,146	2,571	
7,8	0,280994	0,151764	0,947	0,208	5,384	
12,9	0,223930	0,721688	0,961	0,171	3,579	
23,9	0,138482	0,100674	0,975	0,123	1,826	
30,4	0,067132	0,777781	0,983	0,084	0,847	
45,3	0,051816	0,142821	0,982	0,090	0,968	
57,1	0,102075	0,632669	0,972	0,135	2,197	
78,1	0,112232	-3,067728	0,967	0,153	2,822	
117,7	0,259512	0,763756	0,950	0,201	4,993	
178,9	0,246319	1,315612	0,961	0,171	3,579	

Fig. 49. Spectrum of air temperature in Warsaw in year in the years 1779-2015 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 50. Zmiany temperatury powietrza w Warszawie w roku w latach 1600-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 50.** Air temperature changes in Warsaw in year in the years 1600-2200. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 50a. Zmiany temperatury powietrza w Warszawie w roku w latach 1950-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015)

Fig. 50a. Air temperature changes in Warsaw in year in the years 1950-2200. F(t) – calculated values (with a forecast for the years 2016-2200); T_i – values measured in Okęcie (1951-2015)

Rys. 50b. Zmiany temperatury powietrza w Warszawie w roku w latach 2015-2215, F(t) – wartości obliczone (z prognozą na lata 2016-2215)

Fig. 50b. Air temperature changes in Warsaw in Year in the years 2015-2215, F(t) – calculated values (with a forecast for the years 2016-2215

Rys. 51. Zmiany temperatury powietrza w Warszawie w roku w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015). **Fig. 51.** Air temperature changes in Warsaw in year in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 51a. Zmiany temperatury powietrza w Warszawie w roku w latach 1950-2200, f(t) – wartości obliczone (z prognozą na lata 2016-2200); T_i – zmierzone na Okęciu (1951-2015) **Fig. 51a.** Air temperature changes in Warsaw in year in the years 1950-2200. f(t) – calculated values (with a forecast for the years 2016-2200), T_i – values measured in Okęcie (1950-2015)

Rys. 51b. Zmiany temperatury powietrza w Warszawie w roku w latach 2015-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500)

Fig. 51b. Air temperature changes in Warsaw in year in the years 2015-2500, f(t) – calculated values (with a forecast for the years 2016-2500)

6.2. Rekonstrukcja i prognozy zmian temperatury powietrza w Krakowie w tysiącleciu 1500-2500 według pomiarów z lat 1826-2017

Uwzględniono okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza gdzie ε^2 – wariancja resztkowa, *R* – współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora (tab. 18-34, rys. 52-136)

Zmiany temperatury powietrza w Krakowie w tysiącleciu 1500-2500 (miesiące I, II, ..., XII)

STYCZEŃ (I)

Tabela 18. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w styczniu, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 18.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in January in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = -2,130176 - 0,000557t + \dots ; R = 0,468025$							
Θ	b	С	ε ²	R	F_{obl}		
3,3	0,849309	-1,360922	10,587	0,1809	3,198		
6,5	0,793508	1,559537	10,637	0,1678	2,738		
15,4	0,614959	-0,799769	10,668	0,1592	2,456		
19,0	0,535928	2,275664	10,662	0,1609	2,510		
22,3	0,564687	-0,950479	10,767	0,1276	1,564		
27,3	0,465981	-1,859454	10,841	0,0976	0,909		
47,1	0,450730	-2,080188	10,796	0,1168	1,306		
65,9	0,897146	0,299702	10,528	0,1952	3,745		
112,4	0,863756	2,253402	10,539	0,1927	3,643		
178,9	0,695095	2,263880	10,821	0,1065	1,085		

Fig. 52. Spectrum of air temperature in Cracow in January in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Fig. 53. Air temperature changes in Cracow in January in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 54. Zmiany temperatury powietrza w Krakowie w styczniu w latach 1800-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 54.** Air temperature changes in Cracow in Janary in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 55. Zmiany temperatury powietrza w Krakowie w styczniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 55. Air temperature changes in Cracow in January in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 56. Zmiany temperatury powietrza w Krakowie w styczniu w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 56.** Air temperature changes in Cracow in January in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)

LUTY (II)

Tabela 19. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w lutym, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 19.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in February in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} . – F-test)

$F(t) = -8,014259 + 0,003498t + \dots ; R = 0,533521$							
Θ	b	С	ε ²	R	F_{obl}		
3,3	0,885563	-1,289689	11,904	0,1740	2,949		
7,4	1,171609	-2,499243	11,675	0,2212	4,861		
8,2	1,054450	2,438171	11,834	0,1896	3,526		
9,8	0,880685	2,225692	11,906	0,1735	2,933		
11,3	0,818548	-0,994164	11,917	0,1709	2,843		
15,4	0,858414	0,387686	11,803	0,1962	3,783		
25,8	0,404694	-1,276523	12,114	0,1147	1,260		
31,6	0,558525	0,197942	12,063	0,1316	1,665		
68,1	0,611271	-0,535940	11,992	0,1520	2,234		
120,0	0,707559	2,209387	11,995	0,1512	2,210		

Rys. 57. Widmo temperatury powietrza w Krakowie w lutym w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 57. Spectrum of air temperature in Cracow in february in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Fig. 58. Air temperature changes in Cracow in JFebruary in the years 1500-2500. *Ft*) – calculated values (with a forecast for the years 2018-2500)

Rys. 59. Zmiany temperatury powietrza w Krakowie w styczniu w latach 1800-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 59.** Air temperature changes in Cracow in January in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Fig. 60. Air temperature changes in Cracow in February in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 61. Zmiany temperatury powietrza w Krakowie w styczniu w latach 1800-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 61.** Air temperature changes in Cracow in January in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)
MARZEC (III)

Tabela 20. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w marcu, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 20.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in March in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} . – F-test)

$F(t) = -6,893591 + 0,004882t + \dots ; R = 0,532751$								
Θ	b	С	ϵ^2	R	F_{obl}			
3,4	0,493735	-2,339901	5,967	0,1380	1,835			
4,5	0,462814	0,693303	5,974	0,1338	1,722			
5,9	0,557473	-0,412743	5,934	0,1564	2,370			
7,9	0,801777	1,129070	5,759	0,2307	5,314			
11,0	0,711036	1,476951	5,824	0,2063	4,200			
19,2	0,334753	1,993230	5,999	0,1174	1,321			
37,9	0,481284	0,272768	5,942	0,1522	2,240			
62,5	0,320496	2,920428	6,022	0,1000	0,955			
107,3	0,806173	2,875426	5,650	0,2668	7,240			
178,9	0,151734	2,463154	6,014	0,1064	1,082			

Rys. 62. Widmo temperatury powietrza w Krakowie w marcu w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 62. Spectrum of air temperature in Cracow in March in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 63. Zmiany temperatury powietrza w Krakowie w marcu w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Rys. 64. Zmiany temperatury powietrza w Krakowie w marcu w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 64.** Air temperature changes in Cracow in March in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 65. Zmiany temperatury powietrza w Krakowie w marcu w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 65. Air temperature changes in Cracow in March in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 66. Zmiany temperatury powietrza w Krakowie w marcu w latach 1800-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 66.** Air temperature changes in Cracow in March in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1826-2017)

KWIECIEŃ (IV)

Tabela 21. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w kwietniu, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 21.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in April in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = 8,1338 - 0,000003t + \dots$; $R = 0,498314$								
Θ	b	С	ϵ^2	R	F_{obl}			
3,2	0,371154	0,600473	3,115	0,1436	1,9884			
5,3	0,486461	-0,083130	3,067	0,1889	3,4985			
12,9	0,394695	1,395295	3,087	0,1715	2,8636			
17,1	0,347494	1,671427	3,097	0,1621	2,5492			
23,3	0,558260	-0,647183	3,004	0,2356	5,5537			
30,7	0,303727	-0,801928	3,125	0,1322	1,6797			
45,9	0,269647	-2,355620	3,118	0,1402	1,8956			
64,9	0,457201	2,006496	3,025	0,2211	4,8591			
107,8	0,307093	3,011809	3,116	0,1425	1,9575			
178,9	0,219715	1,188155	3,173	0,0487	0,2247			

Rys. 67. Widmo temperatury powietrza w Krakowie w kwietniu w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku) **Fig. 67.** Spectrum of air temperature in Cracow in April in the years 1826-2017 (in the strip 2,0-250

Fig. 67. Spectrum of air temperature in Cracow in April in the years 1826-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Fig. 68. Air temperature changes in Cracow in April in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 69. Zmiany temperatury powietrza w Krakowie w kwietniu w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 69.** Air temperature changes in Cracow in April in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 70. Zmiany temperatury powietrza w Krakowie w kwietniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 70. Air temperature changes in Cracow in April in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 71. Zmiany temperatury powietrza w Krakowie w kwietniu w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 71.** Air temperature changes in Cracow in April in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)

MAJ (V)

Tabela 22. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w maju, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora **Table 22.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in May in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl} – F-test)

$F(t) = -4,035985+0,009116 t + \dots ; R = 0,510934$								
Θ	b	С	ε ²	R	$F_{\rm obl}$			
3,2	0,418939	1,096434	2,797	0,1726	2,9003			
4,3	0,423403	-1,579751	2,795	0,1746	2,9700			
11,3	0,387430	-0,507176	2,806	0,1633	2,5879			
12,9	0,494920	2,083651	2,766	0,2013	3,9920			
19,1	0,466765	2,159113	2,777	0,1916	3,6018			
28,3	0,278279	2,865587	2,835	0,1288	1,5948			
36,9	0,240837	-0,299213	2,838	0,1247	1,4932			
51,7	0,319754	-2,125308	2,820	0,1476	2,1059			
98,4	0,467317	-1,944333	2,739	0,2234	4,9629			
214,8	0,576208	-2,956098	2,882	0,0171	0,0277			

Fig. 72. Spectrum of air temperature in Cracow in May in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 73. Zmiany temperatury powietrza w Krakowie w maju w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 73.** Air temperature changes in Cracow in May in the years 1500-2500 F(t) – calculated values

Rys. 74. Zmiany temperatury powietrza w Krakowie w maju w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 74.** Air temperature changes in Cracow in May in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 75. Zmiany temperatury powietrza w Krakowie w maju w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 75. Air temperature changes in Cracow in May in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 76. Zmiany temperatury powietrza w Krakowie w maju w latach 1800-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 76.** Air temperature changes in Cracow in May in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1826-2017)

CZERWIEC (VI)

Tabela 23. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w czerwcu, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 23.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in June in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = 14,680781+0,00112 t + \dots ; R = 0,536325$								
Θ	b	С	ϵ^2	R	F_{obl}			
3,6	0,316508	-2,026792	1,794	0,1557	2,349			
5,1	0,360049	-2,204639	1,778	0,1815	3,220			
8,7	0,287033	-2,728179	1,794	0,1557	2,349			
10,1	0,286483	2,685436	1,803	0,1391	1,865			
12,8	0,289392	-2,114943	1,802	0,1411	1,919			
17,0	0,292685	-1,699618	1,799	0,1467	2,080			
27,2	0,305190	0,427062	1,796	0,1522	2,241			
52,9	0,303486	2,333250	1,781	0,1770	3,056			
79,9	0,462968	-0,117136	1,705	0,2696	7,404			
185,3	0,334804	0,986805	1,776	0,1845	3,331			
\								

Rys. 77. Widmo temperatury powietrza w Krakowie w czerwcu w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku) **Fig. 77.** Spectrum of air temperature in Cracow in June in the years 1826-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 78. Zmiany temperatury powietrza w Krakowie w czerwcu w latach 1500-2500, F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 78.** Air temperature changes in Cracow in June in the years 1500-2500. Ft) – calculated values

(with a forecast for the years 2018-2500)

Rys. 79. Zmiany temperatury powietrza w Krakowie w czerwcu w latach 1800-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 79** Air temperature changes in Cracow in June in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Fig. 80. Air temperature changes in Cracow in June in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 81. Zmiany temperatury powietrza w Krakowie w czerwcu w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 81.** Air temperature changes in Cracow in June in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)

LIPIEC (VII)

Tabela 24. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w lipcu, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 24.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in July in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} . – F-test)

$F(t) = 23,683022-0,002685 t + \dots ; R = 0,638518$								
Θ	b	С	ϵ^2	R	F_{obl}			
3,9	0,503461	-0,595693	1,663	0,2661	7,200			
5,9	0,437968	2,213663	1,700	0,2239	4,986			
7,0	0,332954	2,653916	1,732	0,1796	3,148			
11,1	0,281771	-1,935410	1,744	0,1598	2,476			
20,1	0,157252	1,401889	1,763	0,1221	1,431			
23,1	0,214785	0,348256	1,748	0,1526	2,254			
26,7	0,177358	-0,107561	1,760	0,1288	1,595			
37,2	0,192922	2,257126	1,758	0,1331	1,704			
66,4	0,658896	0,218832	1,557	0,3606	14,123			
112	0,433236	0,847122	1,674	0,2543	6,531			

Rys. 83. Zmiany temperatury powietrza w Krakowie w lipcu w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Rys. 84. Zmiany temperatury powietrza w Krakowie w lipcu w latach 1800-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 84.** Air temperature changes in Cracow in July in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); *T* – values measured (1826-2017)

Rys. 85. Zmiany temperatury powietrza w Krakowie w lipcu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 85. Air temperature changes in Cracow in July in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500

Rys. 86. Zmiany temperatury powietrza w Krakowie w lipcu w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 86.** Air temperature changes in Cracow in July in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)

SIERPIEŃ (VIII)

Tabela 25. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w sierpniu, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 25.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in August in years 1826-20175, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = 16,907189 + 0,000382 t + \dots ; R = 0,537028$								
Θ	b	С	ε ²	R	$F_{\rm obl}$			
4,0	0,304094	-2,097802	1,603	0,1693	2,790			
5,4	0,300230	2,290551	1,608	0,1601	2,487			
8,0	0,238353	1,395276	1,625	0,1239	1,472			
10,4	0,359641	-2,169710	1,581	0,2049	4,143			
14,1	0,345997	1,705297	1,584	0,2005	3,957			
23,5	0,289417	-3,137119	1,600	0,1746	2,972			
30,8	0,076680	-0,078654	1,642	0,0710	0,479			
38,2	0,122255	-2,764696	1,634	0,0994	0,944			
66,0	0,524381	-0,988431	1,496	0,3058	9,748			
178,9	0,172561	-0,194380	1,632	0,1054	1,061			

Rys. 87. Widmo temperatury powietrza w Krakowie w sierpniu w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku) **Fig. 87.** Spectrum of air temperature in Cracow, in August in the years 1826-2017 (in the strip 2,0-250)

Fig. 87. Spectrum of air temperature in Cracow in August in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 88. Zmiany temperatury powietrza w Krakowie w sierpniu w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Rys. 89. Zmiany temperatury powietrza w Krakowie w sierpniu w latach 1800-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 89.** Air temperature changes in Cracow in August in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 90. Zmiany temperatury powietrza w Krakowie w sierpniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 90. Air temperature changes in Cracow in August in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 91. Zmiany temperatury powietrza w Krakowie w sierpniu w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 91.** Air temperature changes in Cracow in August in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)

WRZESIEŃ (IX)

Tabela 26. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie we wrześniu, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 26.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in September in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} . – F-test)

$F(t)=21,667902-0,004149t + \dots$; $R=0,519965$								
Θ	b	С	ε ²	R	$F_{\rm obl}$			
3,4	0,282886	-2,80367	1,959	0,1453	2,039			
4,0	0,299776	-2,57816	1,957	0,1487	2,138			
5,7	0,439894	-3,12312	1,908	0,2159	4,619			
8,1	0,313686	-3,08959	1,953	0,1553	2,336			
14,1	0,147415	0,23825	1,990	0,0750	0,535			
16,1	0,298293	1,16661	1,968	0,1289	1,598			
21,0	0,375112	-2,40081	1,937	0,1792	3,135			
29,2	0,241367	2,67516	1,946	0,1662	2,684			
36,9	0,156425	-2,12231	1,972	0,1209	1,403			
65,3	0,499974	-3,08433	1,900	0,2249	5,037			

Rys. 92. Widmo temperatury powietrza w Krakowie we wrześniu w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 92. Spectrum of air temperature in Cracow in September in the years 1826-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Fig. 93. Air temperature changes in Cracow in September in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 94. Zmiany temperatury powietrza w Krakowie we wrześniu w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 94.** Air temperature changes in Cracow in September in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Fig. 95. Air temperature changes in Cracow in September in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 96. Zmiany temperatury powietrza w Krakowie we wrześniu w latach 1800-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 96.** Air temperature changes in Cracow in September in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1826-2017)

PAŹDZIERNIK (X)

Tabela 27. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w październiku, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 27.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in October in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = 13,510177-0,00258t + \dots$; $R = 0,511651$								
Θ	b	С	ϵ^2	R	$F_{\rm obl}$			
3,5	0,391117	2,646859	2,769	0,1672	2,718			
4,7	0,528927	-1,503931	2,716	0,2158	4,615			
5,8	0,522344	1,979619	2,718	0,2142	4,542			
8,3	0,305028	1,854522	2,796	0,1359	1,779			
10,1	0,248722	-2,681308	2,814	0,1103	1,163			
18,0	0,475678	0,810735	2,757	0,1794	3,141			
27,1	0,356184	-0,411177	2,805	0,1238	1,470			
37,0	0,483742	0,570996	2,750	0,1861	3,390			
79,0	0,255097	-0,746983	2,807	0,1209	1,402			
214,8	0,048201	-1,901330	2,824	0,0930	0,825			

Rys. 97. Widmo temperatury powietrza w Krakowie w październiku w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 97. Spectrum of air temperature in Cracow in October in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 98. Zmiany temperatury powietrza w Krakowie w październiku w latach 1500-2500, F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 98. Air temperature changes in Cracow in October in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 99. Zmiany temperatury powietrza w Krakowie w październiku w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 99.** Air temperature changes in Cracow in October in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 100. Zmiany temperatury powietrza w Krakowie w październiku w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 100.** Air temperature changes in Cracow in October in the years 1500-2500. f(t) – calculated values

(with a forecast for the years 2018-2500)

Rys. 101. Zmiany temperatury powietrza w Krakowie w październiku w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 101.** Air temperature changes in Cracow in October in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1826-2017)

LISTOPAD (XI)

Tabela 27. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w listopadzie, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora **Table 27.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in November in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl} – F-test)

$F(t) = -14,30584 - 0,008984t + \dots$; $R = 0,561762$								
Θ	b	С	ϵ^2	R	$F_{\rm obl}$			
4,7	0,484125	-2,076830	4,262	0,1671	2,715			
5,7	0,602231	-0,320388	4,194	0,2084	4,291			
10,8	0,663522	-0,937896	4,146	0,2332	5,435			
12,6	0,453849	2,656339	4,236	0,1840	3,311			
16,1	0,398471	2,148645	4,304	0,1354	1,766			
20,9	0,325255	0,040280	4,291	0,1460	2,058			
27,8	0,243995	-0,544564	4,310	0,1303	1,632			
40,8	0,386812	-0,214229	4,258	0,1698	2,806			
68,0	0,310652	-2,555170	4,279	0,1551	2,328			
124,1	0,474431	-1,992397	4,295	0,1428	1,968			

Fig. 102. Spectrum of air temperature in Cracow in November in the years 1826-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 103. Zmiany temperatury powietrza w Krakowie w listopadzie w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 103. Air temperature changes in Cracow in November in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 104. Zmiany temperatury powietrza w Krakowie w listopadzie w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 104.** Air temperature changes in Cracow in November in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 105. Zmiany temperatury powietrza w Krakowie w listopadzie w latach 1500-2500 , f(t) – wartości oblic5zone (z prognozą na lata 2018-2500)

Fig. 105. Air temperature changes in Cracow in November in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 106. Zmiany temperatury powietrza w Krakowie w listopadzie w latach 1800-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 106.** Air temperature changes in Cracow in November in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1826-2017)

GRUDZIEŃ (XII)

Tabela 29. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w grudniu, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 29.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in December in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

F(t) = -20,548811 + 0,010088 t +; R = 0,532502								
Θ	b	С	ϵ^2	R	F_{obl}			
2,9	0,640882	-0,653989	8,164	0,1597	2,472			
4,9	0,890491	1,941571	7,997	0,2131	4,498			
8,2	0,839630	-2,715998	7,957	0,2241	4,995			
10,1	0,526972	-1,693518	8,175	0,1555	2,342			
15,0	0,578164	-2,056436	8,207	0,1427	1,964			
17,4	0,508735	0,519675	8,300	0,0962	0,884			
20,9	0,365779	-1,436576	8,305	0,0931	0,826			
33,5	0,751863	0,546687	8,047	0,1987	3,882			
51,3	0,236701	-0,293096	8,319	0,0836	0,666			
113,4	0,717424	1,870378	8,127	0,1730	2,914			

Rys. 107. Widmo temperatury powietrza w Krakowie w grudniu w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 107. Spectrum of air temperature in Cracow in December in the years 1826-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 108. Zmiany temperatury powietrza w Krakowie w grudniu w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 108. Air temperature changes in Cracow in December in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 109 Zmiany temperatury powietrza w Krakowie w grudniu w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 109.** Air temperature changes in Cracow in December in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 110. Zmiany temperatury powietrza w Krakowie w grudniu w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 110. Air temperature changes in Cracow in December in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 111. Zmiany temperatury powietrza w Krakowie w grudniu w latach 1800-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 111.** Air temperature changes in Cracow in December in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1826-2017)

Zmiany temperatury powietrza w Krakowie w tysiącleciu 1500-2500 (pory roku, rok)

WIOSNA (III-V)

Tabela 30. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie wiosną, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 30.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in spring in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} . – F-test)

$F(t) = 2,364113 + 0,002958t + \dots$; $R = 0,575904$								
Θ	b	С	ϵ^2	R	F_{obl}			
4,5	0,279805	1,061668	1,624	0,1564	2,368			
7,9	0,349808	0,945376	1,598	0,2002	3,944			
11,1	0,327167	-1,193224	1,601	0,1956	3,760			
12,7	0,401368	-0,781101	1,588	0,2146	4,564			
13,9	0,259585	0,693924	1,627	0,1505	2,189			
16,8	0,203073	1,732391	1,635	0,1336	1,716			
29,6	0,220200	2,933388	1,630	0,1444	2,011			
37,4	0,109042	3,134442	1,640	0,1218	1,423			
64,5	0,206776	1,602568	1,615	0,1728	2,908			
106,7	0,504615	1,937576	1,492	0,3221	10,938			

Rys. 112. Widmo temperatury powietrza w Krakowie wiosną w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 112. Spectrum of air temperature in Cracow in spring in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 113. Zmiany temperatury powietrza w Krakowie wiosną w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 113. Air temperature changes in Cracow in spring in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 114. Zmiany temperatury powietrza w Krakowie wiosną w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 114.** Air temperature changes in Cracow in spring in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 115. Zmiany temperatury powietrza w Krakowie wiosną w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 115. Air temperature changes in Cracow in spring in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 116. Zmiany temperatury powietrza w Krakowie wiosną w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 116.** Air temperature changes in Cracow in spring in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)

LATO (VI-VIII)

Tabela 31. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w lecie, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 31.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in summer in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

F(t)= 19,701879 -0,001062 t + ; R = 0,619207								
Θ	b	С	ϵ^2	R	F_{obl}			
3,9	0,250263	-0,532923	0,821	0,1914	3,594			
5,1	0,249476	-2,734142	0,825	0,1787	3,118			
7,0	0,246313	2,365907	0,818	0,2004	3,953			
8,7	0,158121	3,114074	0,838	0,1292	1,604			
11,2	0,167680	1,991765	0,837	0,1336	1,719			
17,0	0,145121	-1,678501	0,841	0,1147	1,261			
23,1	0,217861	0,471836	0,827	0,1720	2,882			
37,6	0,128753	-1,467220	0,832	0,1540	2,297			
70,9	0,507654	-0,615775	0,702	0,4198	20,222			
148,7	0,117057	-2,842072	0,818	0,2004	3,953			

Rys. 117. Widmo temperatury powietrza w Krakowie w lecie w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 117. Spectrum of air temperature in Cracow in summer in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year

Rys. 118. Zmiany temperatury powietrza w Krakowie w lecie w latach 1500-2500 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 118. Air temperature changes in Cracow in summer in the years 1500-2500. *Ft*) – calculated values (with a forecast for the years 2018-2500)

Rys. 119. Zmiany temperatury powietrza w Krakowie w lecie w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 119.** Air temperature changes in Cracow in summer in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 120. Zmiany temperatury powietrza w Krakowie w lecie w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 120. Air temperature changes in Cracow in summer in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 121. Zmiany temperatury powietrza w Krakowie w lecie w latach 1800-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 121.** Air temperature changes in Cracow in summer in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1826-2017)
JESIEŃ (IX-XI)

Tabela 32. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie jesienią, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 32.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in autumn in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t)=2,665003+0,003007t + \dots$; $R=0,495106$								
Θ	b	С	ε ²	R	$F_{\rm obl}$			
4,7	0,330651	-1,459015	1,102	0,2170	4,670			
6,5	0,282240	2,016702	1,114	0,1916	3,602			
10,8	0,219770	-0,987358	1,128	0,1569	2,384			
12,6	0,146645	2,638058	1,138	0,1263	1,533			
17,4	0,192160	2,170410	1,132	0,1454	2,042			
20,3	0,165263	2,506234	1,142	0,1118	1,196			
39,7	0,232462	-2,691445	1,114	0,1916	3,602			
73,1	0,227295	-2,310873	1,115	0,1893	3,514			
113,0	0,336912	1,092517	1,129	0,1541	2,298			
189,5	0,132140	2,714736	1,147	0,0904	0,779			

Rys. 122. Widmo temperatury powietrza w Krakowie jesienią w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 122. Spectrum of air temperature in Cracow in autumn in the years 1826-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year

Rys. 123. Zmiany temperatury powietrza w Krakowie jesienią w latach 1500-2500, F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 123.** Air temperature changes in Cracow in autumn in the years 1500-2500. Ft – calculated values (with a forecast for the years 2018-2500)

Rys. 124. Zmiany temperatury powietrza w Krakowie jesienią w latach 1800-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 124.** Air temperature changes in Cracow in autumn in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 125. Zmiany temperatury powietrza w Krakowie jesienią w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 125. Air temperature changes in Cracow in autumn in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 126. Zmiany temperatury powietrza w Krakowie jesienią w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 126.** Air temperature changes in Cracow in autumn in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)

ZIMA (XII-II)

Tabela 33. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w zimie, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 33.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in winter in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = -14,110953 + 0,006357t + \dots ; R = 0,554668$									
Θ	b	С	ϵ^2	R	$F_{\rm obl}$				
3,3	0,613838	-1,331166	4,847	0,1916	3,600				
8,2	0,875970	2,686597	4,608	0,2902	8,689				
10,3	0,417054	1,218793	4,932	0,1407	1,910				
11,3	0,365563	-0,573257	4,946	0,1305	1,637				
15,4	0,627703	-0,177311	4,839	0,1957	3,763				
21,9	0,350737	0,928007	4,967	0,1134	1,230				
27,6	0,164064	2,537018	5,002	0,0768	0,561				
48,6	0,239626	-1,035149	4,972	0,1089	1,134				
67,4	0,413755	-1,843615	4,906	0,1580	2,421				
112,3	0,628979	1,348878	4,768	0,2289	5,226				

Rys. 127. Widmo temperatury powietrza w Krakowie w zimie w latach 1826-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 127. Spectrum of air temperature in Cracow in winter in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Fig. 128. Air temperature changes in Cracow in winter in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 129. Zmiany temperatury powietrza w Krakowie w zimie w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 129.** Air temperature changes in Cracow in winter in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 130. Zmiany temperatury powietrza w Krakowie w zimie w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 130.** Air temperature changes in Cracow in winter in the years 1500-2500, f(t) – calculated values

Fig. 130. Air temperature changes in Cracow in winter in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 131. Zmiany temperatury powietrza w Krakowie w zimie w latach 1800-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1826-2017) **Fig. 131.** Air temperature changes in Cracow in winter in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1826-2017)

ROK (I-XII)

Tabela 34. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza w Krakowie w roku, w latach 1826-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 34.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Cracow in year in years 1826-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t)=3,241169+0,002511t + \dots$; $R=0,618837$								
Θ	b	С	ϵ^2	R	$F_{\rm obl}$			
4,0	0,142319	-1,832401	0,753	0,1121	1,202			
6,4	0,196564	-2,379574	0,742	0,1643	2,620			
7,8	0,263744	0,075178	0,723	0,2278	5,173			
11,2	0,184887	2,239694	0,735	0,1902	3,545			
14,0	0,137667	1,213731	0,749	0,1334	1,713			
16,4	0,201785	2,985765	0,739	0,1758	3,015			
38,3	0,059848	-1,929863	0,753	0,1121	1,202			
48,6	0,055455	0,679981	0,752	0,1178	1,329			
69,9	0,275573	-2,811482	0,699	0,2887	8,595			
112,0	0,398775	0,942363	0,666	0,3559	13,703			

Fig. 132. Spectrum of air temperature in Cracow in year in the years 1826-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Fig. 133. Air temperature changes in Cracow in year in the years 1500-2500. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 134. Zmiany temperatury powietrza w Krakowie w roku w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 134.** Air temperature changes in Cracow in year in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1826-2017)

Rys. 135. Zmiany temperatury powietrza w Krakowie w roku w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 135. Air temperature changes in Cracow in year in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 136. Zmiany temperatury powietrza w Krakowie w roku w latach 1800-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1826-2017) **Fig. 136.** Air temperature changes in Cracow in year in the years 1800-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1826-2017)

UNIWERSYTET WARSZAWSKI WYDZIAŁ GEOGRAFII I STUDIÓW REGIONALNYCH

MARIA STOPA-BORYCZKA, JERZY BORYCZKA

XXXV. BADANIA KLIMATU EUROPY W RÓŻNYCH SKALACH PRZESTRZENNYCH (W PUBLIKACJACH ZAKŁADU KLIMATOLOGII UW, 1951-2016)

atlas

WSPÓŁZALEŻNOŚCI PARAMETRÓW METEOROLOGICZNYCH I GEOGRAFICZNYCH W POLSCE

TOM Z OKAZJI: 200 LAT UNIWERSYTETU WARSZAWSKEGO 100 LAT GEOGRAFII WARSZAWSKIEJ 40 LAT WYDZIAŁU GEOGRAFII I STUDIÓW REGIONALNYCH

Warszawa 2016

6.3. Rekonstrukcja i prognozy zmian temperatury powietrza we Wrocławiu w tysiącleciu 1500-2500 według pomiarów z lat 1792-2017

Uwzględniono okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza gdzie ε^2 – wariancja resztkowa, *R* – współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora (tab. 35-51, rys. 137-221).

Zmiany temperatury powietrza we Wrocławiu w tysiącleciu 1500-2500 (miesiące I, II, ..., XII)

STYCZEŃ (I)

Tabela 35. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w styczniu, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 35.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in January in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = -12,201878 + 0,005403t + \dots$; $R = 0,521153$							
Θ	b	С	ϵ^2	R	F_{obl}		
5,5	0,712574	-1,598991	12,139	0,146	2,995		
7,8	0,907605	-0,108491	12,010	0,178	4,509		
9,3	0,973350	-0,178367	11,920	0,197	5,585		
11,4	0,538689	-2,489657	12,210	0,125	2,175		
19,3	0,732559	-0,300343	12,130	0,148	3,099		
27,7	0,597064	-1,872472	12,229	0,118	1,957		
46,5	0,583877	0,815997	12,264	0,106	1,558		
71,2	0,813162	1,360913	12,023	0,175	4,355		
119,0	1,084048	2,865876	11,845	0,212	6,494		
178,9	0,988997	2,432070	12,325	0,079	0,867		

Rys. 137. Widmo temperatury powietrza we Wrocławiu w styczniu w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 137. Spectrum of air temperature in Wroclaw in January in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 138. Zmiany temperatury powietrza we Wrocławiu w styczniu w latach 1700-2300 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 138. Air temperature changes in Wroclaw in January in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 139. Zmiany temperatury powietrza we Wrocławiu w styczniu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 139.** Air temperature changes in Wrocław in January in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); Ti – values measured (1792-2017)

Fig. 140. Air temperature changes in Wroclaw in January in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 141. Zmiany temperatury powietrza we Wrocławiu w styczniu w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 141.** Air temperature changes in Wrocław in January in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1792-2017)

LUTY (II)

Tabela 36. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w lutym, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 36.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in February in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} . – F-test)

F(t) = -18,849825 + 0,009588 t +; R = 0,462792								
Θ	b	С	ϵ^2	R	$F_{\rm obl}$			
3,9	0,690634	2,227995	10,911	0,149	3,134			
7,8	0,718326	0,514115	10,879	0,158	3,549			
9,2	0,774404	0,292567	10,811	0,177	4,440			
14,0	0,845837	0,724912	10,783	0,184	4,810			
22,4	0,551091	1,164989	10,988	0,124	2,145			
31,3	0,672552	1,825836	10,879	0,158	3,549			
48,2	0,291166	-2,341879	11,063	0,093	1,195			
73,3	0,197584	-0,075242	11,057	0,096	1,271			
118,3	0,572756	1,418207	10,83	0,172	4,190			
178,9	0,281901	0,365336	11,153	0,023	0,072			

Rys. 142. Widmo temperatury powietrza we Wrocławiu w lutym w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 142. Spectrum of air temperature in Wroclaw in february in the years 1792-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 143. Zmiany temperatury powietrza we Wrocławiu w lutym w latach 1700-2300, F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 143.** Air temperature changes in Wroclaw in JFebruary in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 144. Zmiany temperatury powietrza we Wrocławiu w styczniu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 144.** Air temperature changes in Wrocław in January in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 145. Zmiany temperatury powietrza we Wrocławiu w lutym w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 145.** Air temperature changes in Wrocław in JFebruary in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 146. Zmiany temperatury powietrza we Wrocławiu w styczniu w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 146.** Air temperature changes in Wrocław in January in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1792-2017)

MARZEC (III)

Tabela 37. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w marcu, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 37.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in March in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = 22,217991 + 0,013142t + \dots ; R = 0,562023$									
Θ	b	С	ϵ^2	R	F_{obl}				
4,1	0,621337	-1,706749	6,238	0,175	4,385				
7,9	0,713432	1,120942	6,172	0,203	5,908				
11,1	0,486892	-1,071560	6,296	0,148	3,073				
19,4	0,363637	2,641492	6,363	0,107	1,588				
28,1	0,291733	-1,322473	6,353	0,114	1,808				
38,9	0,395409	2,276283	6,314	0,138	2,671				
46,6	0,246075	1,085830	6,342	0,121	2,050				
79,4	0,368407	0,865194	6,242	0,174	4,294				
120,8	0,338315	-2,568553	6,217	0,185	4,866				
178,9	0,241491	1,879576	6,323	0,133	2,471				

Rys. 147. Widmo temperatury powietrza we Wrocławiu w marcu w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 147. Spectrum of air temperature in Wroclaw in March in the years 1792-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 148. Zmiany temperatury powietrza we Wrocławiu w marcu w latach 1700-2300 , F(t) – wartości obliczone (z prognozą na lata 2018-2300)

Fig. 148. Air temperature changes in Wroclaw in March in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2300

Rys. 149. Zmiany temperatury powietrza we Wrocławiu w marcu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 149.** Air temperature changes in Wrocław in March in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 150. Zmiany temperatury powietrza we Wrocławiu w marcu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 150.** Air temperature changes in Wrocław in March in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 151. Zmiany temperatury powietrza we Wrocławiu w marcu w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 151.** Air temperature changes in Wrocław in March in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1792-2017)

KWIECIEŃ (IV)

Tabela 38. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w kwietniu, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 38.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in April in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = -12,990437 + 0,011066 t + \dots ; R = 0,573939$								
Θ	b	С	ε ²	R	$F_{\rm obl}$			
4,5	0,299718	1,879471	3,759	0,114	1,817			
6,6	0,436803	1,937102	3,720	0,152	3,283			
9,5	0,471602	-2,251077	3,711	0,160	3,626			
14,9	0,419808	2,755993	3,687	0,179	4,547			
16,4	0,360793	2,837771	3,693	0,174	4,316			
23,6	0,52611	-0,116681	3,620	0,222	7,186			
56,0	0,221127	2,538530	3,730	0,144	2,904			
73,9	0,409591	-0,127625	3,685	0,180	4,625			
119,3	0,209326	1,202650	3,746	0,128	2,302			
178,9	0,333374	0,459934	3,730	0,144	2,904			

Rys. 152. Widmo temperatury powietrza we Wrocławiu w kwietniu w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 152. Spectrum of air temperature in Wroclaw in April in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 153. Zmiany temperatury powietrza we Wrocławiu w kwietniu w latach 1700-2300 , F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 153.** Air temperature changes in Wrocław in April in the years 1700-2300 , F(t) – calculated values

Fig. 153. Air temperature changes in Wroclaw in April in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 154. Zmiany temperatury powietrza we Wrocławiu w kwietniu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 154.** Air temperature changes in Wrocław in April in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 155. Zmiany temperatury powietrza we Wrocławiu w kwietniu w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 155. Air temperature changes in Wroclaw in April in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 156. Zmiany temperatury powietrza we Wrocławiu w kwietniu w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 156.** Air temperature changes in Wrocław in April in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1792-2017)

MAJ (V)

Tabela 39. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w maju, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora **Table 39.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in May in years 1792-2017, $(\varepsilon^2 - \text{rest variance}, R - \text{multiple correlation coefficient}, F_{obl} - F-test)$

F(t)= 0,796521+0,006584 t + ; R = 0,541141								
Θ	b	С	ε ²	R	$F_{\rm obl}$			
4,3	0,329199	-1,810188	3,121	0,134	2,540			
6,9	0,346133	2,836773	3,124	0,131	2,405			
11,4	0,440577	2,999801	3,065	0,189	5,108			
13,5	0,420521	0,449699	3,088	0,169	4,042			
16,5	0,338159	0,112464	3,112	0,145	2,947			
20,7	0,376859	0,593622	3,103	0,154	3,355			
28,4	0,378043	-2,392102	3,094	0,163	3,767			
49,0	0,417015	2,776303	3,093	0,164	3,812			
84,6	0,298772	-2,668909	3,093	0,164	3,812			
178,9	0,222436	1,402079	3,119	0,137	2,630			

Rys. 157. Widmo temperatury powietrza we Wrocławiu w maju w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 157. Spectrum of air temperature in Wroclaw in May in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 159. Zmiany temperatury powietrza we Wrocławiu w maju w latach 1750-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 159.** Air temperature changes in Wrocław in May in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); *T* – values measured (1792-2017)

Rys. 160. Zmiany temperatury powietrza we Wrocławiu w maju w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 160.** Air temperature obangos in Wrocławi in May in the years 1500-2500, f(t) – calculated yalva

Fig. 160. Air temperature changes in Wroclaw in May in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

CZERWIEC (VI)

Tabela 40. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w czerwcu, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 40.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in June in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} . – F-test)

F(t)= 6,403935+0,005458 t + ; R = 0,551553									
Θ	b	С	ϵ^2	R	$F_{\rm obl}$				
4,1	0,333522	-2,329877	2,21	0,162	3,720				
5,6	0,295772	-1,799983	2,23	0,132	2,449				
7,1	0,263849	1,581989	2,226	0,139	2,701				
10	0,279471	-3,123428	2,224	0,142	2,828				
13	0,346065	0,070009	2,208	0,165	3,848				
20,1	0,278160	-0,326570	2,233	0,127	2,260				
32,5	0,255512	-2,709710	2,229	0,134	2,512				
55,2	0,331589	-1,059208	2,166	0,214	6,599				
80,8	0,337424	1,318177	2,165	0,215	6,666				
127,7	0,273543	-2,122985	2,153	0,227	7,472				

Rys. 162. Widmo temperatury powietrza we Wrocławiu w czerwcu w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 162. Spectrum of air temperature in Wroclaw in June in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 163. Zmiany temperatury powietrza we Wrocławiu w czerwcu w latach 1600-2300, F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 163.** Air temperature changes in Wrocław in June in the years 1600-2300. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 164. Zmiany temperatury powietrza we Wrocławiu w czerwcu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 164.** Air temperature changes in Wrocław in June in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 165. Zmiany temperatury powietrza we Wrocławiu w czerwcu w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 165. Air temperature changes in Wroclaw in June in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 166. Zmiany temperatury powietrza we Wrocławiu w czerwcu w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 166.** Air temperature changes in Wrocław in June in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1792-2017)

LIPIEC (VII)

Tabela 41. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w lipcu, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl}– test Fishera-Snedecora **Table 41.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in July in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}– - F-test)

$F(t)=23,683022-0,002685 t + \dots ; R=0,638518$									
Θ	b	С	ϵ^2	R	F_{obl}				
3,9	0,520782	-0,572127	2,168	0,241	8,482				
5,9	0,453680	2,300719	2,185	0,225	7,343				
6,2	0,386175	3,067188	2,215	0,194	5,374				
10,2	0,271938	-1,848858	2,257	0,139	2,706				
20,1	0,288347	1,360435	2,229	0,177	4,474				
22,7	0,216838	-2,772813	2,245	0,156	3,458				
28,8	0,148588	1,919424	2,272	0,113	1,777				
39,2	0,093498	0,728223	2,282	0,091	1,165				
75,0	0,524600	2,463926	2,109	0,289	12,580				
126,7	0,188713	2,086814	2,191	0,219	6,945				

Rys. 167. Widmo temperatury powietrza we Wrocławiu w lipcu w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 167. Spectrum of air temperature in Wroclaw in July in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 168. Zmiany temperatury powietrza we Wrocławiu w lipcu w latach 1600-2300 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 168. Air temperature changes in Wroclaw in July in the years 1600-2300. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 169. Zmiany temperatury powietrza we Wrocławiu w lipcu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 169.** Air temperature changes in Wrocław in July in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 170. Zmiany temperatury powietrza we Wrocławiu w lipcu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 170. Air temperature changes in Wroclaw in July in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500

Rys. 171. Zmiany temperatury powietrza we Wrocławiu w lipcu w latach 1750-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 171.** Air temperature changes in Wrocław in July in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1792-2017)

SIERPIEŃ (VIII)

Tabela 44. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w sierpniu, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 44.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in August in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

F(t)= 6,957622+0,005657 t + ; R = 0,591914									
Θ	b	С	ϵ^2	R	F_{obl}				
5,4	0,374379	2,520025	2,284	0,166	3,908				
6,5	0,316555	0,901008	2,300	0,144	2,921				
10,2	0,345717	-0,481657	2,268	0,185	4,909				
11,4	0,319521	3,141236	2,276	0,176	4,407				
17,5	0,276758	0,240144	2,302	0,141	2,798				
23,3	0,246106	-1,173096	2,304	0,138	2,676				
33,3	0,216046	-0,333127	2,306	0,135	2,554				
48,8	0,426358	1,829354	2,230	0,225	7,344				
69,6	0,477668	2,378988	2,199	0,252	9,393				
141,8	0,389958	1,298444	2,252	0,203	5,924				

Rys. 172. Widmo temperatury powietrza we Wrocławiu w sierpniu w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku) **Fig. 172.** Spectrum of air temperature in Wrocław in August in the years 1792-2017 (in the strip 2,0-250

years, $\Delta \Theta = 0,1$ year)

Rys. 174. Zmiany temperatury powietrza we Wrocławiu w sierpniu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 174.** Air temperature changes in Wrocław in August in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 175. Zmiany temperatury powietrza we Wrocławiu w sierpniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 175. Air temperature changes in Wroclaw in August in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 176. Zmiany temperatury powietrza we Wrocławiu w sierpniu w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 176.** Air temperature changes in Wrocław in August in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1792-2017)

WRZESIEŃ (IX)

Tabela 43. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu we wrześniu, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 43.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in September in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} . – F-test)

$F(t) = 5,701608 + 0,004326t + \dots$; $R = 0,54617$								
Θ	b	С	ϵ^2	R	$F_{\rm obl}$			
3,4	0,350644	-2,641398	2,206	0,165	3,854			
6,3	0,408710	-0,415781	2,187	0,189	5,087			
8,7	0,265730	-2,520363	2,222	0,142	2,833			
12,1	0,326095	-1,892711	2,213	0,155	3,406			
16,1	0,328780	0,873532	2,206	0,165	3,854			
20,6	0,318492	-1,096095	2,211	0,158	3,534			
29,1	0,343534	0,966238	2,176	0,201	5,810			
34,3	0,171020	-2,054898	2,235	0,120	2,014			
66,6	0,516230	0,610930	2,142	0,235	8,093			
123,3	0,193472	1,489692	2,242	0,106	1,577			

Fig. 177. Spectrum of air temperature in Wroclaw in September in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0.1$ year)

Rys. 178. Zmiany temperatury powietrza we Wrocławiu we wrześniu w latach 1600-2300 , F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 178.** Air temperature changes in Wrocław in September in the years 1600-2300. Ft – calculated values

(with a forecast for the years 2018-2500) F(t) = calculated values

Rys. 179. Zmiany temperatury powietrza we Wrocławiu we wrześniu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 179.** Air temperature changes in Wrocław in September in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 180. Zmiany temperatury powietrza we Wrocławiu we wrześniu w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 180. Air temperature changes in Wroclaw in September in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 181. Zmiany temperatury powietrza we Wrocławiu we wrześniu w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 181.** Air temperature changes in Wrocław in September in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1792-2017)

PAŹDZIERNIK (X)

Tabela 44. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w październiku, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora

Table	44. Periods Θ , amplitudes b and phases c of air temperature in Wroclaw in October in years 1	792-
2017, ($(\varepsilon^2 - \text{rest variance}, R - \text{multiple correlation coefficient}, F_{obl.} - \text{F-test})$	

$F(t)=1,472423-0,00390 t + \dots$; $R=0,505457$						
Θ	b	С	ϵ^2	R	F_{obl}	
5,1	0,528949	0,597656	3,002	0,215	6,716	
8,7	0,482252	-0,365354	3,047	0,179	4,579	
11,1	0,335120	1,006233	3,077	0,150	3,189	
12,0	0,390913	2,124532	3,044	0,182	4,720	
18,1	0,413831	-1,791681	3,059	0,168	4,020	
26,3	0,245990	-1,379011	3,119	0,096	1,288	
38,4	0,200937	-0,181211	3,119	0,096	1,288	
50,2	0,352462	2,211264	3,088	0,138	2,686	
73,6	0,201895	0,381106	3,091	0,135	2,549	
126,6	0,359806	-2,486234	3,041	0,184	4,860	

Rys. 182. Widmo temperatury powietrza we Wrocławiu w październiku w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 182. Spectrum of air temperature in Wroclaw in October in the years 1792-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 183. Zmiany temperatury powietrza we Wrocławiu w październiku w latach 1600-2300, F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 183.** Air temperature changes in Wrocław in October in the years 1600-2300. F(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 184. Zmiany temperatury powietrza we Wrocławiu w październiku w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 184.** Air temperature changes in Wrocław in October in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Fig. 185. Air temperature changes in Wroclaw in October in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 186. Zmiany temperatury powietrza we Wrocławiu w październiku w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 186.** Air temperature changes in Wrocław in October in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1792-2017)

LISTOPAD (XI)

Tabela 45. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w listopadzie, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 45.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in November in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

	$F(t) = -19,7506 + 0,012222t + \dots$; $R = 0,587692$						
Θ	b	С	ε2	R	Fobl		
4,4	0,489860	-1,988704	4,378	0,159	3,564		
8,1	0,463278	0,827510	4,379	0,158	3,531		
10,7	0,554870	0,797840	4,300	0,206	6,131		
16,1	0,374284	2,002169	4,374	0,161	3,693		
21,1	0,375585	-0,765870	4,380	0,157	3,499		
27,8	0,487695	-0,887189	4,361	0,170	4,115		
33,3	0,456659	0,212484	4,348	0,178	4,540		
40,9	0,310567	0,783626	4,397	0,145	2,952		
68,2	0,390959	-1,837804	4,412	0,133	2,473		
112,7	0,193769	0,018159	4,463	0,079	0,867		

Fig. 187. Spectrum of air temperature in Wroclaw in November in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0.1$ year)

Rys. 188. Zmiany temperatury powietrza we Wrocławiu w listopadzie w latach 1700-2300, F(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 188.** Air temperature changes in Wrocław in November in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 189. Zmiany temperatury powietrza we Wrocławiu w listopadzie w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 189.** Air temperature changes in Wrocław in November in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 190. Zmiany temperatury powietrza we Wrocławiu w listopadzie w latach 1500-2500, f(t) – wartości oblic5zone (z prognozą na lata 2018-2500)

Fig. 190. Air temperature changes in Wroclaw in November in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 191. Zmiany temperatury powietrza we Wrocławiu w listopadzie w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 191.** Air temperature changes in Wrocław in November in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1792-2017)

GRUDZIEŃ (XII)

Tabela 46. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w grudniu, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 46.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in December in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

	F(t)= -19,2651+0,010017 t + ; R = 0,51074						
Θ	b	С	ϵ^2	R	F_{obl}		
4,9	0,724505	1,925506	8,414	0,172	4,212		
8,2	0,700565	-2,425696	8,392	0,179	4,584		
10,1	0,707604	-2,015618	8,380	0,183	4,789		
15,0	0,727943	-1,586974	8,361	0,189	5,113		
18,3	0,557290	3,079028	8,452	0,159	3,572		
25,0	0,319466	-0,442457	8,554	0,116	1,884		
34,1	0,566573	0,566934	8,464	0,154	3,372		
49,9	0,325612	-0,267327	8,583	0,101	1,411		
100,8	0,395594	2,159263	8,568	0,109	1,656		
178,9	0,387455	1,367993	8,489	0,145	2,955		

Rys. 192. Widmo temperatury powietrza we Wrocławiu w grudniu w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku) **Fig. 192.** Spectrum of air temperature in Wroclaw in December in the years 1792-2017 (in the strip 2,0-250

402

years, $\Delta \Theta = 0,1$ year)

Rys. 193. Zmiany temperatury powietrza we Wrocławiu w grudniu w latach 1700-2300 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 193. Air temperature changes in Wroclaw in December in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 194. Zmiany temperatury powietrza we Wrocławiu w grudniu w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 194.** Air temperature changes in Wrocław in December in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 195. Zmiany temperatury powietrza we Wrocławiu w grudniu w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 195. Air temperature changes in Wroclaw in December in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 196. Zmiany temperatury powietrza we Wrocławiu w grudniu w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 196.** Air temperature changes in Wrocław in December in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1792-2017)

Zmiany temperatury powietrza we Wrocławiu w tysiącleciu 1500-2500 (pory roku, rok)

WIOSNA (III-V)

Tabela 47. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu wiosną, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 47.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wroclaw in spring in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

	F(t)= -14,9852+0,012111 t + ; R = 0,646573						
Θ	b	С	ε ²	R	F_{obl}		
3,4	0,296748	-2,195253	2,171	0,141	2,784		
4,4	0,274636	-1,159754	2,180	0,125	2,203		
6,9	0,281416	1,458971	2,175	0,134	2,525		
11,3	0,289423	-0,329778	2,157	0,162	3,698		
16,3	0,246601	-1,516856	2,169	0,144	2,914		
28,2	0,207025	0,681183	2,173	0,137	2,655		
47,4	0,193610	0,346551	2,167	0,147	3,044		
77,3	0,145561	1,603026	2,122	0,205	6,035		
119,0	0,314320	1,162919	2,122	0,205	6,035		
178,9	0,257396	0,384695	2,155	0,164	3,829		

Rys. 197. Widmo temperatury powietrza we Wrocławiu wiosną w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 197. Spectrum of air temperature in Wroclaw in spring in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Rys. 198. Zmiany temperatury powietrza we Wrocławiu wiosną w latach 1700-2300 , F(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 198. Air temperature changes in Wroclaw in spring in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2500)

Rys. 199. Zmiany temperatury powietrza we Wrocławiu wiosną w latach 1750-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 199.** Air temperature changes in Wrocław in spring in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 200. Zmiany temperatury powietrza we Wrocławiu wiosną w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 200. Air temperature changes in Wroclaw in spring in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 201. Zmiany temperatury powietrza we Wrocławiu wiosną w latach 1750-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 201.** Air temperature changes in Wrocław in spring in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1792-2017)

LATO (VI-VIII)

Tabela 48. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w lecie, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 48.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in summer in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

F(t)= 6,328367+0,005959 t + ; R = 0,654795						
Θ	b	С	ϵ^2	R	F_{obl}	
3,9	0,299124	-0,764675	1,176	0,189	5,102	
7,1	0,191259	1,730512	1,199	0,130	2,357	
8,7	0,165001	-2,912413	1,202	0,120	2,007	
11,4	0,220558	3,014931	1,189	0,158	3,537	
22,8	0,139021	-0,304433	1,202	0,120	2,007	
33,1	0,162682	-2,299672	1,192	0,150	3,181	
39,1	0,091121	-1,264010	1,204	0,113	1,774	
50,5	0,296613	-2,565415	1,146	0,245	8,848	
75,6	0,372552	-2,597726	1,089	0,327	16,534	
128,5	0,207419	-1,676261	1,121	0,284	12,123	

Rys. 202. Widmo temperatury powietrza we Wrocławiu w lecie w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 202. Spectrum of air temperature in Wroclaw in summer in the years 1792-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year

Rys. 203. Zmiany temperatury powietrza we Wrocławiu w lecie w latach 1700-2300, F(t) – wartości obliczone (z prognozą na lata 2018-2300)

Fig. 203. Air temperature changes in Wroclaw in summer in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2300)

Rys. 204. Zmiany temperatury powietrza we Wrocławiu w lecie w latach 1800-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 204.** Air temperature changes in Wrocław in summer in the years 1800-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 205. Zmiany temperatury powietrza we Wrocławiu w lecie w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500) **Fig. 205.** Air temperature changes in Wrocław in summer in the years 1500-2500, f(t) – calculated

Fig. 205. Air temperature changes in Wroclaw in summer in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 206. Zmiany temperatury powietrza we Wrocławiu w lecie w latach 1750-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 206.** Air temperature changes in Wrocław in summer in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1792-2017)

JESIEŃ (IX-XI)

Tabela 49. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu jesienią, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl}– test Fishera-Snedecora **Table 49.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in autumn in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl}. – F-test)

F(t)= -5,29583+0,007406 t + ; R = 0,602043						
Θ	b	С	ϵ^2	R	$F_{\rm obl}$	
5,5	0,366148	-1,646496	1,491	0,218	6,872	
10,7	0,263064	0,712128	1,517	0,176	4,389	
12,8	0,222401	-1,135922	1,53	0,150	3,180	
17,9	0,225316	3,036215	1,533	0,144	2,903	
20,8	0,220869	-2,074835	1,531	0,148	3,087	
28,6	0,209356	-1,117680	1,53	0,150	3,180	
40,2	0,174521	1,625886	1,53	0,150	3,180	
50,7	0,170575	-1,635737	1,54	0,127	2,263	
72,9	0,312990	-2,696093	1,508	0,191	5,239	
118,0	0,128423	-2,703660	1,52	0,170	4,108	

Rys. 207. Widmo temperatury powietrza we Wrocławiu jesienią w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 207. Spectrum of air temperature in Wroclaw in autumn in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year

Rys. 208. Zmiany temperatury powietrza we Wrocławiu jesienią w latach 1700-2300 , F(t) – wartości obliczone (z prognozą na lata 2018-2300)

Fig. 208. Air temperature changes in Wroclaw in autumn in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2300)

Rys. 209. Zmiany temperatury powietrza we Wrocławiu jesienią w latach 1750-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 209.** Air temperature changes in Wrocław in autumn in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 210. Zmiany temperatury powietrza we Wrocławiu jesienią w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 210. Air temperature changes in Wroclaw in autumn in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 211. Zmiany temperatury powietrza we Wrocławiu jesienią w latach 1750-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 211.** Air temperature changes in Wrocław in autumn in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1792-2017)

ZIMA (XII-II)

Tabela 50. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w zimie, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora **Table 50.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wroclaw in winter in years 1792-2017, (ε^2 – rest variance, *R* – multiple correlation coefficient, F_{obl} – F-test)

$F(t) = -21,7853 + 0,010985t + \dots \ ; \ R = \ 0,574823$						
Θ	b	С	ϵ^2	R	$F_{\rm obl}$	
3,1	0,506221	-2,665826	5,567	0,153	3,289	
5,2	0,508600	-0,473602	5,582	0,144	2,909	
8,3	0,752201	1,881296	5,41	0,225	7,389	
12,9	0,583630	0,602526	5,495	0,190	5,140	
15,3	0,516862	1,076941	5,563	0,155	3,391	
22,6	0,444088	-0,608553	5,613	0,123	2,131	
33,0	0,295871	1,714726	5,621	0,117	1,932	
47,9	0,365291	2,331388	5,609	0,126	2,231	
72,2	0,292205	-2,444433	5,574	0,148	3,112	
115,9	0,391004	-0,681304	5,434	0,216	6,747	

Rys. 212. Widmo temperatury powietrza we Wrocławiu w zimie w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 212. Spectrum of air temperature in Wroclaw in winter in the years 1792-2017 (in the strip 2,0-250 years, $\Delta\Theta = 0,1$ year)

Fig. 213. Air temperature changes in Wroclaw in winter in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2300)

Rys. 214. Zmiany temperatury powietrza we Wrocławiu w zimie w latach 1750-2200, F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 214.** Air temperature changes in Wrocław in winter in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 215. Zmiany temperatury powietrza we Wrocławiu w zimie w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Fig. 215. Air temperature changes in Wroclaw in winter in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2018-2500)

Rys. 216. Zmiany temperatury powietrza we Wrocławiu w zimie w latach 1750-2200, f(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 216.** Air temperature changes in Wrocław in winter in the years 1750-2200. f(t) – calculated values (with a forecast for the years 2018-2200), T – values measured (1792-2017)

ROK (I-XII)

Tabela 51. Okresy Θ , amplitudy *b* i fazy *c* cykli temperatury powietrza we Wrocławiu w roku, w latach 1792-2017, ε^2 – wariancja resztkowa, *R*- współczynnik korelacji wielokrotnej, *F*_{obl} – test Fishera-Snedecora **Table 51.** Periods Θ , amplitudes *b* and phases *c* of air temperature in Wrocław in year in years 1792-2017 , (ε^2 – rest variance, *R* – multiple correlation coefficient, *F*_{obl} – F-test)

$F(t) = -9,009284 + 0,009160 t + \dots ; R = 0,727732$						
Θ	b	С	ε ²	R	F_{obl}	
3,4	0,171014	-2,577188	1,259	0,112	1,752	
5,5	0,280737	-1,535092	1,229	0,190	5,163	
7,8	0,209389	0,164314	1,248	0,145	2,983	
11,4	0,236914	2,928128	1,237	0,173	4,237	
12,8	0,271017	-0,328886	1,235	0,177	4,467	
16,2	0,171878	-0,205831	1,251	0,137	2,645	
33,0	0,140835	2,478637	1,247	0,148	3,096	
48,9	0,234877	1,739462	1,227	0,194	5,396	
74,3	0,197071	1,166802	1,200	0,243	8,623	
120,0	0,110501	3,113485	1,170	0,287	12,382	

Rys. 217. Widmo temperatury powietrza we Wrocławiu w roku w latach 1792-2017 (w paśmie 2,0-250 lat, $\Delta \Theta = 0,1$ roku)

Fig. 217. Spectrum of air temperature in Wroclaw in year in the years 1792-2017 (in the strip 2,0-250 years, $\Delta \Theta = 0,1$ year)

Rys. 218. Zmiany temperatury powietrza we Wrocławiu w roku w latach 1700-2300, F(t) – wartości obliczone (z prognozą na lata 2018-2300) **Fig. 219.** Air temperature abarges in Wrocław, in year in the years 1700-2300, F(t) – calculated values

Fig. 218. Air temperature changes in Wroclaw in year in the years 1700-2300. Ft) – calculated values (with a forecast for the years 2018-2300)

Rys. 219. Zmiany temperatury powietrza we Wrocławiu w roku w latach 1750-2200 , F(t) – wartości obliczone (z prognozą na lata 2018-2200); T – wartości zmierzone (1792-2017) **Fig. 219.** Air temperature changes in Wrocław in year in the years 1750-2200. F(t) – calculated values (with a forecast for the years 2018-2200); T – values measured (1792-2017)

Rys. 220. Zmiany temperatury powietrza we Wrocławiu w roku w latach 1500-2500 , f(t) – wartości obliczone (z prognozą na lata 2018-2500)

Rys. 221. Zmiany temperatury powietrza we Wrocławiu w roku w latach 1750-2200 , f(t) – wartości obliczone (z prognozą na lata 2018-2200); *T* – wartości zmierzone (1792-2017) **Fig. 221.** Air temperature changes in Wrocław in year in the years 175-2200. f(t) – calculated values (with a forecast for the years 2018-2200), *T* – values measured (1792-2017)

UNIWERSYTET WARSZAWSKI WYDZIAŁ GEOGRAFII I STUDIÓW REGIONALNYCH

MARIA STOPA-BORYCZKA, JERZY BORYCZKA

XXXVIII-XXXIX. POSTĘP BADAŃ ZMIAN KLIMATU WARSZAWY W OSTATNICH STULECIACH (XVIII-XXI)

atlas

WSPÓŁZALEŻNOŚCI PARAMETRÓW METEOROLOGICZNYCH I GEOGRAFICZNYCH W POLSCE

68 LAT KLIMATOLOGII W UNIWERSYTECIE WARSZAWSKIM

Warszawa 2018

С

VII. PROBLEMY BADAŃ WSPÓŁCZESNYCH ZMIAN KLIMATU ZIEMI

Współczesne zmiany klimatu są jednym z ważniejszych problemów badawczych nauk przyrodniczych i społeczno-ekonomicznych. Istotne znaczenie dla ochrony życia na Ziemi ma znajomość tendencji zarówno naturalnych, jak też antropogenicznych zmian klimatu.

Na naturalną zmienność klimatu, wynikającą z przyczyn zewnętrznych (astronomicznych) i wewnętrznych (geologicznych) systemu Ziemia- atmosfera, nakładają się efekty oddziaływań antropogenicznych.

W ostatnich latach w publikacjach o zmianach klimatu zwraca się uwagę, że zagrożeniem życia na naszej planecie może być zbyt duża emisja do atmosfery: dwutlenku węgla (CO₂), podtlenku azotu (N₂O), freonów (CCl₂F₂, CCl₃F) i innych gazów, tzw. szklarniowych, wywołujących efekt cieplarniany – ocieplenie klimatu półkuli północnej w ostatnich dwóch stuleciach. Globalne ocieplenie w różnych strefach kuli ziemskiej są przypisywane przede wszystkim antropogenicznej części efektu cieplarnianego atmosfery. Powstał Światowy Program Klimatyczny na lata 1980-2000 badań i prognoz klimatu. W roku 1990 na zlecenie Organizacji Narodów Zjednoczonych powstał Międzynarodowy Zespół ds. Zmian Klimatu IPCC (Intergovernmental Panel on Climate Change).

Postępującemu globalnemu ociepleniu klimatu przypisywany jest zwykle wzrost efektu cieplarnianego, wywołanego przez gazy szklarniowe – głównie dwutlenek węgla (CO₂). W modelach wg scenariuszy $2xCO_2$ ocenia się, że po podwojeniu stężenia CO_2 w atmosferze (względem stanu początkowego 280 ppm) nastąpi wzrost temperatury powietrza o 0,1-4,0°C, w zależności od szerokości geograficznej.

W raporcie IPCC (1990) przewidywano wzrost temperatury powietrza na Ziemi w roku 2030 o 1,5-4,5 °C , a w IPCC (1995) prognozowano o połowę mniejsze przyrosty antropogeniczne temperatury powietrza o 1-3,5 °C w roku 2100 (po uwzględnieniu rozpraszania promieniowania słonecznego przez aerozole siarczanowe, pochodzące z emisji do atmosfery SO₂).

W raportach IPCC: 2001, 2007 i 2012 stwierdza się coraz większą liczbę ekstremalnych (katastroficznych) zjawisk pogodowych (susz, huraganów, powodzi). Prognozowane jest ocieplenie klimatu (w raportach: 2001 – o 1,4-5,8 °C, 2007 – o 1,1-6,4 °C), a następnie o 3,2-5,4 °C pod koniec XXI wieku (w odniesieniu do lat 1850-1900) lub o 0,9-2,3 °C, gdy zawartość CO_2 przy redukcji spalania węgla wyniesie 430-480 ppm.

Mało znane są jednak tendencje koncentracji w atmosferze naturalnych gazów śladowych (pary wodnej, naturalnego CO_2), które powodują zasadniczą część naturalną efektu cieplarnianego – w latach przedindustrialnych + 33 °C (różnica między temperaturą ówczesną, a planetarną).

O istnieniu efektu cieplarnianego w atmosferze (wywołanego głównie przez parę wodną i CO₂) świadczy równanie bilansu promieniowania słonecznego padającego na oświetloną powierzchnię Ziemi (πR^2) i długofalowego Ziemi ($4\pi R^2$):

0,25(1-A)s = aT

(1)

gdzie: s - stała słoneczna, A - albedo Ziemi, a - stała Stefana-Boltzmana.

Temperatura planetarna Ziemi $T = 254^{\circ}$ K jest znacznie mniejsza (o 2-4°C) od średniej temperatury wynikającej z pomiarów.

Ze względu na sprzężenie zwrotne miedzy efektem cieplarnianym pary wodnej i temperatury powietrza wzrost stałej słonecznej powoduje dwukrotny przyrost tempera-

tury (Wetherald i Manabe 1975). Zmiany ilości energii słonecznej dochodzącej do powierzchni Ziemi wynikają zarówno z długookresowych zmian parametrów orbity Ziemi (Milankovič 1938), jak też zmiennej aktywności Słońca (Kondratiev i Nikolski 1974).

Interesujące są wyniki badań stężenia CO_2 i temperatury (wg izotopu deuteru) w ciągu ostatnich 160 000 lat na podstawie rdzeni lodowych na stacji Vostok (WMO 1990, rys. 1). Zgodność dat dwóch głównych maksimów stężenia CO_2 i temperatury (współczesnych i odległych 125 000 lat temu) świadczy, że zawartość dwutlenku węgla w atmosferze może wynikać ze wzrostu temperatury powietrza.

Ocieplenie klimatu 125 000 lat temu było prawdopodobnie spowodowane znacznym wzrostem promieniowania słonecznego (maksimum krzywej Milankoviča ok. 125 000 lat temu). Tak wiec było to naturalne ocieplenie, wynikające z nałożenia się trzech okresów zmian parametrów orbity Ziemi (92 000, 40 000, 21 000 lat). Regulatorem zawartości CO_2 w atmosferze (skorelowanej z temperatura powietrza) są prawdopodobnie wody oceanów .Wzrostowi temperatury powietrza na Ziemi na ogól przypisywane jest podnoszenie się poziomu oceanów – średnio o 10-25 cm w ciągu ostatniego stulecia. Poziom Morza Bałtyckiego w latach 1811-1990 (w Świnoujściu) wzrasta średnio o 5,7 cm/100 lat (najszybciej jesienią – o 6,8 cm i zimą – o 5,7 cm/100 lat).

W prognozach przewidywany jest dalszy wzrost poziomu oceanów – ekspansja oceanów (objętości wód) ze wzrostem temperatury i topnienie lodowców. Według scenariusza emisji (IPCC 1995) poziom oceanów w roku 2100 podniesie się o prawie 50 cm (wg prognoz IPCC 1990 – o ponad 65 cm). Prognozuje się, że poziom oceanów podniesie się w roku 2100 o 15 cm – przy minimalnej emisji CO_2 i o 95 cm – przy emisji maksymalnej.

Rys. 1. Zmiany stężenia CO_2 w atmosferze (krzywa górna) i paleotemperatury (izotopu tlenu ¹⁸O, krzywa dolna) w ciągu ostatnich 160 000 lat na podstawie rdzeni lodowych na stacji Vostok (WMO, 1990) **Fig. 1.** Changes of CO_2 concentration in the atmosphere (upper curve) and of the palaeotemperature (oxygen isotope ¹⁸O, lower curve) during the last 160,000 years on the basis of the ice cores from the Wostok station (WMO, 1990, *The atmosphere of the planet Earth*, No 735).

Istnieje też ujemne sprzężenie zwrotne wywołane wzrostem zawartości CO₂ w atmosferze (efektem cieplarnianym). Ze wzrostem temperatury powietrza wzrasta parowanie wód oceanów, powodując większe zachmurzenie. Zachmurzenie ogranicza dopływ promieniowania słonecznego (bezpośredniego) do powierzchni Ziemi, przeciwdziałając globalnemu ociepleniu.

Dopływ promieniowania słonecznego (bezpośredniego) do powierzchni Ziemi ograniczają pyły emitowane do atmosfery – pochodzenia antropogenicznego i naturalnego (z erupcji wulkanicznych). Pyły zmieniają istotnie bilans radiacyjny, powodując lokalne obniżenia temperatury powietrza.

Ochłodzenia klimatu wystąpiły podczas wiekowych minimów plam słonecznych: Maundera (1640-1710) i Daltona (1780-1830). Zauważono (Charvatova, Jestlik 1996), że podczas minimów wiekowych aktywności Słońca (co 179 lat) ruch środka masy Układu Słonecznego odbywa się po innych orbitach (chaotycznych) niż podczas maksimów (po orbitach uporządkowanych). Podobne minimum wiekowe aktywności Słońca (i ochłodzenie klimatu) autorzy prognozują w połowie stulecia. XXI.

Podobnie Sezanow i Malkentin (1996) sugerują, że anomalne ciepłe zimy są wywołane specyficznym układem największych planet (Saturn, Neptun, Uran, które znajdują się w koniunkcji ze Słońcem i Ziemią) deformujących heliosferę własnymi polami grawitacyjnymi.

Znamienne jest, że minimum absolutne trendu czasowego temperatury powietrza w Europie w ostatnich dwóch stuleciach (1779-1990) przypada na minimum absolutne aktywności Słońca (na najsłabszy cykl 13-letni plam słonecznych 1811-1823) i jedno-czenie na maksimum wiekowe aktywności wulkanicznej. Na początku XIX w. wystąpi-ły wybuchy wulkanów o największym wskaźniku zapylenia atmosfery *DVI* (dust veil index H. Lamba, 1974): Tambora – o *DVI* = 3000 w 1815 r., Coseguina – o *DVI* = 4000 w 1835 r.

Postępujące globalne ocieplenie może też wynikać z tendencji malejącej wskaźnika *DVI* w latach 1680-1980 i z większych odstępów czasu miedzy kolejnymi wybuchami wulkanów. Na stałą słoneczną ma niewątpliwie wpływ drobny pył, pozostający w stratosferze przez wiele lat.

Okresowość zbliżoną do wiekowej (120 lat) i dwuwiekowej (190 lat), która najbardziej kształtuje współczesne wahania klimatu, występuje również w ciągach czasowych substancji organicznych zdeponowanych w osadach jeziornych sprzed 10 000 lat (w holocenie).

Te długie okresy: temperatury; aktywności Słońca i erupcji wulkanicznych (wiekowy i dwuwiekowy) powtarzają się wielokrotnie w przypadku akumulacji substancji organicznych.

W prognozach zmian klimatu w XXI wieku można pominąć bardzo powolne zmiany, spowodowane długimi okresami wahań parametrów orbity Ziemi (90 000, 40 000, 21 000 lat; Milanković, 1938). Można również pominąć najdłuższe holoceńskie cykle klimatu (powyżej 1000 lat), wykryte w ciągach czasowych substancji organicznych zdeponowanych w osadach jezior – Wikaryjskie, Gościąż, Święte (Boryczka, Wicik 1994). Ich ekstrema (ochłodzenia i ocieplenia) prawdopodobnie będą się powtarzać, gdyż analogicznej okresowości ulegają parametry Układu Słonecznego. W prognozach nie można jednak zaniechać paruset letnich holoceńskich okresów, które kształtowały klimat Ziemi w ostatnich tysiącleciach. Być może, że współczesne ocieplenie jest efektem nałożenia się bardzo długiego holoceńskiego cyklu klimatu (jego fazy rosnącej) i zmienności antropogenicznej.

*) Intergovernmental Panel on Climate Change, IPCC (1990), IPCC (1995), IPCC (2001), IPCC (2007) i IPCC (2012).

7.1. Zmiany wiekowe klimatu Europy z uwzględnieniem prognoz w XXI wieku i ich weryfikacja

Zmiany wiekowe klimatu Europy, rekonstrukcję i prognozy oraz ich sprawdzalność, ze szczególnym uwzględnieniem Polski (Warszawy) przedstawiono w tomie 33 *Atlasu*:

 Boryczka J., Stopa-Boryczka M., 2015, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXIII. Zmiany wiekowe klimatu Europy z uwzględnieniem prognoz w XXI wieku i ich weryfikacja (red.: K. Błażejczyk, M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski), Wyd. UW, Warszawa, ss. 444.

Niepokojące jest systematyczne ocieplenie klimatu Ziemi w ostatnich dwóch stuleciach. Średnia globalna temperatura powietrza w dwudziestym wieku wzrosła o 0,3-0,6°C. Na przykład w Europie przede wszystkim zimy są coraz cieplejsze: w Warszawie (1779-2017) (T= 0,0121 t-25,3674, R= 0,349) – co 1,2 °C/100 lat, Pradze (1771-1980) – co 0,25°C/100 lat, Genewie (1768-1980) – co 0,5°C/100 lat, Anglii środkowej (1859-1973) o 0,3°C/100 lat. Tendencja rosnąca temperatury powietrza w XIX-XX wieku może częściowo wynikać z tzw. miejskich wysp ciepła – z coraz większej akumulacji ciepła przez zabudowę i inne powierzchnie sztuczne o małym albedo. Po prostu szare miasta pochłaniają więcej energii słonecznej w dzień niż ich otoczenie (szczególnie w zimie). Miasta, w których znajdują się stacje meteorologiczne, są znacznie cieplejsze (przede wszystkim w nocy) od otaczających terenów. Na przy-kład różnica temperatury powietrza miedzy śródmieściem Warszawy i peryferiami może osiągać nawet 9,1°C (jak 30.07 i 17.08.1992 r.).

Ciągi czasowe temperatury powietrza w ostatnich stuleciach w Europie świadczą, że współczesne ocieplenie klimatu może w dużym stopniu wynikać z przyczyn naturalnych. Tendencja rosnąca temperatury powietrza zwłaszcza zimą jest po prostu wypadkową nakładających się cykli naturalnych. Na przykład coraz cieplejsze zimy w Warszawie w latach 1779-2017 – o 1,21°C/100 lat są efektem nałożenia się kilku okresów. Na przykład wypadkowa (prosta regresji) interferencji okresów temperatury w latach 1779-1990: 3,5; 5,5; 8,3; 12,9; 18,0; 38,3; 66,7; 113,1; 218,3 lat.wyjaśnia wzrost temperatury powietrza podczas zim o 0,93°C/100 lat. Na zmienność antropogeniczną przypada zaledwie 0,1°C/100 lat. Analogicznie, coraz cieplejsze zimy w Genewie – o 0,5°C/100 lat, Pradze – o 0,25°C/100 lat są efektem nakładania się cyklicznych wahań temperatury powietrza.

Globalne ocieplenie klimatu (w Warszawie w latach 1779-1990 – średnio o 0,67°C/100 lat) może być wywołane wzrostem aktywności Słońca. Aktywność Słońca (liczby Wolfa) w latach 1779-1993 wzrasta średnio o 17,2/ 100 lat. Wzrosła ona w ostatnich dwóch stuleciach średnio o 34,5, tj. o ponad 50% w stosunku do średniej wartości liczb Wolfa.

Okresowe wahania klimatu (ocieplenia i ochłodzenia) są analogiczne do okresów zmian aktywności Słońca – zbliżonych do okresów planetarnych *P*. (obiegu czterech największych planet i ich wzajemnego położenia): 11,7; 1,8; 13,8; 19,9; 29,5; 35,9; 45,4; 84,0; 164,0; 171,4 lat. Interesujący jest eksperyment polegający na wyznaczeniu trendu czasowego liczb Wolfa

$$W = a_0 + b_j \sin\left(\frac{2\pi}{P_j} t + c_j\right) \tag{2}$$

przy założeniu okresowości planetarnej P_j , z uwzględnieniem modulacji najkrótszego okresu 11,7 lat przez okresy najdłuższe 84 lat i 171,4 lat.

Wypadkowa okresów planetarnych dobrze opisuje zmienność aktywności Słońca (wyniki obserwacji) w latach 1700-1993 (współczynnik korelacji R = 0,8).

Okresowe wahania temperatury powietrza skorelowane z okresami aktywności Słońca i okresami planetarnymi implikują tezę o chłodzeniu klimatu w przyszłym – XXI stuleciu. Wypadkowa okresów temperatury powietrza w Warszawie podczas zim cechuje się głębokim minimum w latach 2000-2100, kiedy to prognozowane jest kolejne wiekowe minimum aktywności Słońca.

Naturalne wahania klimatu są wywołane głównie zmiennością stałej słonecznej. Zmienia się ona w ciągu roku o $\pm 3,3\%$ w wyniku różnej odległości Ziemi od Słońca: styczeń (147 mm km) – 2,01 cal·cm⁻²·min⁻¹, lipiec (152 mm km) – 1,94 cal·cm⁻²·min⁻¹. Stała słoneczna *s* (cal·cm⁻²·min⁻¹) zależy od aktywności Słońca. Maksymalna jej wartość przypada na przedział 80-100 liczb Wolfa (Kondratiev 1965). Z wzoru K. Kondratieva i G. Nikolskiego (1970):

$$s = 1,903 + 0,011W^{0.5} - 0,0006W$$
⁽³⁾

wynika, iż w cyklu 11- letnim stała słoneczna waha się o 2,5%. Ciąg czasowy stałej słonecznej w latach 1700-1993 (otrzymany wg powyższego wzoru) cechuje się średnią okresowością: 11,1; 34,2; 102,0; 187,8 lat (minima wariancji resztkowej, metoda sinusoid regresji).

Tendencja stałej słonecznej w latach 1700-1993 jest rosnąca i może być przyczyna postępującego ocieplenia klimatu Ziemi .

Zmiany zachodzące na Słońcu są przenoszone na Ziemię nie tylko poprzez stałą słoneczną, ale także przez jonosferę (cyrkulację atmosferyczną).

Prognozy zmian klimatu i ich sprawdzalność

Problemem badań rozwiązywanym nadal jest weryfikacja prognoz zmian klimatu Ziemi, które powstały w Zakładzie Klimatologii UW, podejmowane kilkakrotnie (przez J. Boryczkę ze współautorami) na podstawie najdłuższej w danym czasie serii obserwacyjnych temperatury powietrza z Warszawy (Okęcie), tj. od 1779 roku i opadów atmosferycznych od 1813 – do roku 1979. Zweryfikowano najwcześniejsze prognozy zmian wartości średnich miesięcznych, sezonowych lub rocznych temperatury powietrza w Warszawie – 1779-1979 (Boryczka, 1984, Boryczka i in., 1992) i 1779-1990 (Boryczka i in., 2000)

Weryfikacja tych prognoz polega zatem na zbadaniu synchroniczności przebiegów (koincydencji ekstremów) wartości temperatury zmierzonych T i prognozowanych f(t), z zastosowaniem odpowiednich testów statystycznych.

Porównano zmierzone wartości temperatury powietrza w Warszawie-Okęciu w latach 1951-2010 z prognozowanymi z wyprzedzeniem 31 lat i 20 lat. Dobrą sprawdzalnością cechują się prognozy temperatury powietrza w Warszawie na lata 1980-2010 i 1991-2010 z 1984 i 2000 roku, według cykli wykrytych metodą "sinusoid regresji" w seriach wyników pomiarów w Warszawie-Obserwatorium Astronomiczne w latach 1779-1979.

Porównano też zmierzone sumy opadów atmosferycznych w Warszawie (Okęcie) w latach 1951-2010 z prognozowanymi z wyprzedzeniem 31 lat i 20 lat. Dobrą sprawdzalnością cechują się prognozy opadów w Warszawie na lata 1980-2010 i 1991-2010z 1993 i 2000 roku, według cykli wykrytych metodą "sinusoid regresji" w seriach wyników pomiarów.

Zweryfikowano również prognozy zmian temperatury powietrza w innych miejscach Europy, wybierając niektóre spośród 40 miast Europy, opublikowane w 3 tomach *Atlasu współzależności parametrów meteorologicznych i geograficznych w Polsce*: zima i lato – t. XVII (Boryczka i in., 2003), styczeń i lipiec – t. XIX (Boryczka i in., 2005) oraz rok – t. XX-XXI (Stopa-Boryczka i in., 2007). Do wybranych miejsc należą: środkowa Anglia (1659-1993), Greenwich (1659-1969), Paryż (1767-1995), Berlin (1769-1990), Moskwa (1780-2002), Sztokholm (1756-1994) i Rzym (1811-1989).

Szczególną uwagę zwrócono na prognozy zmian temperatury powietrza w zimie i styczniu, ze względu na postępujące ocieplenie klimatu Europy. Do weryfikacji wykorzystano późniejsze wyniki pomiarów na stacjach: Warszawa (Okęcie, 1951-2015), Londyn (Gatwick, 1951-2012), Paryż (Montsouris, 1951-2011), Berlin (1951-2012), Moskwa (1951-2012), Sztokholm (1951-2012) i Rzym (1951-2012).

Ta pozytywna ocena prognoz wynika z synchronicznych przebiegów wieloletnich zmierzonych i obliczonych wartości temperatury (wypadkowa interferencji cykli), a także z istotnych statystycznie związków korelacyjnych (na poziomie ufności 95%).

UNIWERSYTET WARSZAWSKI WYDZIAŁ GEOGRAFII I STUDIÓW REGIONALNYCH

JERZY BORYCZKA, MARIA STOPA-BORYCZKA

XXXIII. ZMIANY WIEKOWE KLIMATU EUROPY Z UGLĘDNIENIEM PROGNOZ W XXI WIEKU I ICH WERYFIKACJA

atlas

WSPÓŁZALEŻNOŚCI PARAMETRÓW METEOROLOGICZNYCH I GEOGRAFICZNYCH W POLSCE

Warszawa 2015

SPIS TREŚCI (33)

I.	WPROWADZENIE	5
II.	PROBLEMY BADAN WSPÓŁCZESNYCH ZMIAN KLIMATU ZIEMI	7
III.	NATURALNE I ANTROPOGENICZNE ZMIANY KLIMATU EUROPY Z WYODRĘBNIENIEM POLSKI (WAŻNIEJSZE WYNIKI BADAŃ)	17
3.1.	Zmiany wiekowe klimatu Polski	17
3.2.	Naturalne i antropogeniczne zmiany klimatu Warszawy	38
3.3.	Cykliczne zmiany aktywności Słońca i cyrkulacji atmosferycznej w Europie	64
3.4.	Tendencje wiekowe klimatu miast w Europie	80
3.5.	Ochłodzenia i ocieplenia klimatu miast w Europy	94
3.5.1.	Tendencie temperatury powietrza miast w Europie w XVII-XX wieku	94
3.5.2.	Cykliczność jako cecha pola temperatury powietrza w Europie	97
3.6.	Cykliczne zmiany klimatu miast w Europie	114
3.6.1.	Synchroniczność krótkich cykli klimatu miast w Europie	114
3.7.	Prognoza zmian klimatu Warszawy w XXI wieku	133
3.7.1.	Ochłodzenia i ocieplenia klimatu Warszawy i ich uwarunkowania	133
3.7.2.	Okresowa zmienność opadów atmosferycznych w Warszawie	137
3.7.3.	Tendencie zmian klimatu Warszawy	140
3.7.4.	Prognoza zmian klimatu Warszawy w XXI wieku	1/1
3.8	Prognozy zmian klimatu miast Europy	141
381	Wohw cyrkulacji atmosferycznej na klimat Europy	149
382	Wokw Oscylacji Północnostlantyckiej na klimat Polski	149
383	Ochłodzenie i ocieplenie klimatu Europy Środkowej kształtowane, przez Niż	152
0.0.0.	Islandzki i Wyż Azorski	160
3.8.4.	Prognozy temperatury powietrza w miastach Europy Środkowej (Warszawa, Kraków, Braga, Ganowa) w XXI wieku	163
IV.	POSTEP BADAŃ NATURALNYCH ZMIAN KLIMATU EUROPY W PIERWSZEJ	105
	DEKADZIE XXI WIEKU W ODNIESIENIU DO DRUGIEJ POŁOWY XX WIEKU	179
4.1.	Mroźne zimy i upalne lata w Polsce	179
4.1.1.	Przeszłość i teraźniejszość klimatu Ziemi	179
4.1.2.	Rola cyrkulacji atmosferycznej w kształtowaniu klimatu Europy	186
4.1.3.	Mroźne zimy i upalne lata w Europie w XVIII-XXI wieku ze szczególnym	
4 4 4	uwzględnieniem Polski	191
4.1.4.	Widma temperatury powietrza w Europie	196
4.1.3.	i prognoza, no, rok 2100	206
42.	Cechy termiczne klimatu Europy	223
4.2.1.	Okresowe zmjany temperatury powietrza w Europie	226
4.2.2.	Zmiany temperatury nowietrza w Europie w XVIII-XXI wieku. Prognozy no rok 2100	220
4.3.	Cykliczne zmiany klimatu Europy w ostatnim tysiacleciu według danych dendrolo-	204
	gicznych	258
4.3.1.	Wpływ Oscylacji Północnoatlantyckiej (NAO) na temperaturę powietrza w Europie	258
4.3.2.	Synchroniczność cykli klimatycznych i dendrologicznych w Europie	263
4.3.3.	Prognozy zmian klimatu Europy w XXI wieku według szerokości słojow drzew	286
4.4. 111	Zmiany kiimatu warszawy i innych miast Europy w XVII-XXI wieku Wiekowe, zmiany klimatu miast pizipnych Europy (Londyn, Warszawa, Moskwa)	290
4.4.1.	Wiekowe zmiany klimatu miast nizimiych Europy (Condyn, Warszawa, Moskwa) Wiekowe zmiany klimatu miast górskich Europy (Genewa Zurych Saentis Sonn-	291
	blick)	298
4.4.3.	Solarne i cyrkulacyjne uwarunkowania klimatu miast Europy (liczby Wolfa, NAO,	200
444	typy wangennenna i Osuchowskiej-ruenn) Woływ Oscylacji Północnoatlantyckiej na zróżnicowanie cech termicznych klimatu	299
	miast Europy (Paryż, Marsylia, Wrocław, Kraków, Warszawa)	300
4.4.5.	Wpływ NAO na zróżnicowanie cech opadowych klimatu miast środkowej Europy	
	(Wrocław, Warszawa)	303
		429

4.4.6.	Badanie cykliczności i tendencji zmian temperatury powietrza w Europie na profilach : południkowym (Sztokholm, Warszawa, Ateny) i równoleżnikowym (Paryż,	205
447	Badanie cykliczności i tendencii zmian temperatury powietrza w Europie (Szwecia)	305
	na podstawie danych dendrologicznych	306
V.	Z BADAŃ ZMIAN KLIMATU MIAST EUROPY W XXI WIEKU	310
5.1 .	Weryfikacja prognoz okresowych zmian temperatury powietrza w Europie w XX- XXI wieku(Boryczka J., Stopa-Boryczka M., Kossowska-Cezak U., Wawer J.)	310
5.1.1.	Prognozy zmian temperatury powietrza w Warszawie (z 1984 r. i inne)	311
5.1.2 .	Prognozy zmian temperatury powietrza w innych miastach Europy	319
5.2.	Weryfikacja prognoz okresowych zmian opadów atmosferycznych w Polsce w latach 1813-2010 (Boryczka J., Stopa-Boryczka M., Kossowska-Cezak U., Wawer J.)	341
5.2.1.	Woływ aktywności Słońca na opady atmosferyczne	3/3
5.2.2.	Sprawdzalność prognoż opadów atmosferycznych we Wrocławiu według pomiarów	949
	w latach 1859-1979	348
5.2.3.	Sprawdzalność prognoz opadów atmosferycznych w Warszawie według pomiarów	
	w latach 1813-1979 i 1813-1990	353
VI.	FALE CIEPŁA I CHŁODU W PRZEBIEGU ROCZNYM TEMPERATURY POWIE-	262
61	TRZA W WARSZAWIE (1951-2010) Zależność przebiegu rocznego temperatury powietrzą od aktywonóści Słońca. (na	303
0.1.	przykładzie Warszawy, 1951-2010) (Boryczka J., Stopa-Boryczka M., Kossowska-	
	Cezak U., Wawer J.)	363
6.1.1 .	Fale chłodu i ciepła w cyklu rocznym temperatury powietrza	364
6.1.2 .	Cyrkulacyjne uwarunkowania fal chłodu i ciepła	367
6.1.3.	Wpływ aktywności Słońca na fale chłodu i ciepła	369
6.2.	The dependency between annual air temperature and solar activity. A case study of Warsaw in 1951-2010(Boryczka J., Stopa-Boryczka M., Kossowska-Cezak U.,	
	Wawer J.)	376
6.2.1 .	Annual profiles of air temperature in cold and hot waves	377
6.2.2 .	The impact of circulation on warm and cool waves	380
6.2.3 .	The influence of solar activity on warm and cool waves	382
VII.	REKONSTRUKCJA I PROGNOZA ZMIAN KLIMATU ZIEMI W CZASIE OD	
	-1 000 000 BP_DO_1 000 000 AD	389
7.1.	Zmiany klimatu Ziemi (od -1 000 000 BP do 1 000 000 AD) według promieniowania	
7.0	słonecznego na równoleżniku $\varphi = 65 \text{ N}$	389
1.2.	w rdzeniu Jodowym wyspy Devon (Arktyka Kanadviska)	304
73	Zmiany klimatu. Ziemi. (od -25 000 BP do 25 000 AD) według substancji organicz-	004
	nych zdeponowanych w osadach jeziora Gościąż	397
7.4.	Zależność aktywność Słońca i erupcji wulkanów od koncentracji masy planet w	
	Układzie Słonecznym	400
VIII.	ZAKONCZENIE	403
IX.	LITERATURA	409
	ZAŁĄCZNIK 1. SPIS PUBLIKACJI (1960-2015) – Maria Stopa-Boryczka	417
	ZAŁĄCZNIK 2. SPIS PUBLIKACJI (1961-2015) – Jerzy Boryczka	431
Wprowadzenie

Tom XXXIII Atlasu współzależności parametrów meteorologicznych i geograficznych w Polsce pt. Zmiany wiekowe klimatu Europy z uwzględnieniem prognoz w XXI wieku i ich weryfikacja stanowi podsumowanie ważniejszych wyników badań w zakresie naturalnych i antropogenicznych zmian klimatu Europy.

Szczególne znaczenie mają cykliczne zmiany klimatu i ich przyczyny, tendencje wiekowe, rekonstrukcja i prognoza zmian w XXI wieku oraz ich sprawdzalność (wery-fikacja).

W rozdziale II pt. *Problemy badań współczesnych zmian klimatu Ziemi* zwrócono uwagę na naturalną zmienność klimatu, wynikającą z przyczyn zewnętrznych (astronomicznych) i wewnętrznych (geologicznych) systemu Ziemia-atmosfera, na które nakładają się efekty oddziaływań antropogenicznych. Ten problemowy przegląd literatury stanowi ogólne tło do aktualnych własnych badań naturalnych i antropogenicznych zmian klimatu Europy (i Polski).

W rozdziale III pt. Naturalne i antropogeniczne zmiany klimatu Europy z wyodrębnieniem Polski (ważniejsze wyniki badań) przedstawiono niektóre wyniki badań zawarte w tomach VII i IX-XV Atlasu współzależności parametrów meteorologicznych i geograficznych w Polsce:

Tom VII. Zmiany wiekowe klimatu Polski, 1992

- Tom IX. Naturalne i antropogeniczne zmiany klimatu Warszawy, 1995
- Tom X. Cykliczne zmiany aktywności Słońca i cyrkulacji atmosferycznej w Europie , 1997
- Tom XI. Tendencje wiekowe klimatu miast w Europie, 1998

Tom XII. Ochłodzenia i ocieplenia klimatu miast w Europie, 1999

Tom XIII. Cykliczne zmiany klimatu miast w Europie, 1999

Tom XIV. Prognoza zmian klimatu Warszawy w XXI wieku, 2000

Tom XV. Prognozy zmian klimatu miast Europy, 2001

Na przykład celem tomu X *Atlasu* jest określenie cykliczności i tendencji klimatu Europy i ich naturalnych przyczyn – wpływu aktywności Słońca i erupcji wulkanów.

Z kolei tom XI jest znacznym rozszerzeniem badań podjętych w tomie VII, dotyczącym wiekowej tendencji klimatu Warszawy (Boryczka, Stopa-Boryczka i in., 1992). Rozwiązano w nim problemy *Naturalnych i antropogenicznych zmian klimatu miast Europy w XVI-XXI* wieku, zawarte w tomie IX Atlasu (1995). Przedstawiono więcej dowodów dotyczących naturalnych przyczyn globalnego ocieplenia niż w książce pt. *Naturalne i antropogeniczne zmiany klimatu Ziemi w XVII-XXI wieku* (Boryczka 1993).

Istotne znaczenie poznawcze mają wyniki badań w zakresie cykliczności i tendencji zmian klimatu Europy przedstawione w 7 kolejnych tomach Atlasu IX-XV opublikowanych w latach 1995-2001.

Rozdział IV pt. Postęp badań naturalnych zmian klimatu w pierwszej dekadzie XX wieku w odniesieniu do ostatniej dekady XX wieku zawiera informacje o aktualnie rozwiązywanych problemach badawczych, a świadectwem tego są tomy XVII, XIX, XX-XXI i XXV Atlasu współzależności parametrów meteorologicznych i geograficznych w Polsce opublikowane w latach 2003-2010:

Tom XVII.	Mroźne zimy i upalne lata w Polsce , 2003
Tom XIX.	Cechy termiczne klimatu Europy, 2005
Tom XX-XXI.	Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według
	danych dendrologicznych, 2007
Tom XXV.	Zmiany klimatu Warszawy i innych miast Europy w XVII-XXI wieku,
	2010

W tomach XVII, XIX i XX-XXI przedstawiono wykresy zmian temperatury powietrza w XVIII-XXI wieku w 40 miejscowościach europejskich podczas zimy i lata (XVII), w styczniu i lipcu (XIX) oraz roku (XX-XXI). Szczególne znaczenie mają prognozy klimatu do roku 2100 na podstawie interferencji silniejszych cykli zawartych w widmach temperatury powietrza – w wybranych 9 miejscowościach. Prognozy wskazują na naturalne ochłodzenie klimatu Europy (i Polski) w połowie XXI wieku, które częściowo może być złagodzone przez czynniki antropogeniczne (efekt cieplarniany i miejską wyspę ciepła).

Dużą rolę w kształtowaniu klimatu odgrywają długie cykle: 102- i 187-letnie aktywności Słońca, które są obecne w widmach temperatury powietrza.

Nowość stanowią cykle klimatu określone pośrednio na podstawie danych dendrologicznych z Europy (i Polski) w ostatnim 1000-leciu oraz prognozy po rok 2100.

Ciągi chronologiczne szerokości pierścieni drzew: sosny, świerka i modrzewia w Europie cechują się również podobnymi okresami około 100- i 180-letnim.

Na uwagę zasługują prognozy po rok 2100 przyrostów rocznych 30 drzew, rosnących w Europie. Przebiegi czasowe ich rocznych przyrostów cechują się głównymi minimami w połowie XXI wieku. Słoje np. świerka *Picea abies* z Falkenstein (1540-1995) cechują się "silnymi" cyklami: 110, 189 i 429 lat.

Tom XXV pt. Zmiany klimatu Warszawy i innych miast Europy w XVII-XXI wieku zawiera oryginalne wyniki badań studenckich, przedstawione w rozdziale Współczesne zmiany klimatu miast Europy w pracach magisterskich Zakładu Klimatologii Uniwersytetu Warszawskiego. Z kilkunastu prac magisterskich dotyczących wiekowych zmian klimatu Europy Zachodniej, Środkowej i Wschodniej (cykliczności, tendencji i prognoz klimatu) podano najważniejsze wyniki badań w odniesieniu do literatury klimatologicznej. Każdy problem badawczy scharakteryzowano wybierając 1 lub 3 prace magisterskie.

W rozdziale V. Z badań zmian klimatu miast Europy w XXI wieku sprawdzono prognozy klimatu powstałe w Zakładzie Klimatologii UW, na podstawie najdłuższych w danym czasie serii obserwacyjnych w Europie: Anglia środkowa, Paryż, Genewa, Berlin, Warszawa, Praga, Rzym, Sztokholm i Moskwa. Porównano zmierzone wartości temperatury powietrza (T) w latach 1951-2012 z prognozowanymi f(t) z wyprzedzeniem wieloletnim (w Warszawie o 35 lat, 1951-2014).

W rozdziale VI. *Fale ciepła i chłodu w przebiegu rocznym temperatury powietrza w Warszawie (1951-2010)* zbadano zależność cyklu rocznego temperatury powietrza w Warszawie (Okęcie) od cyklu rocznego aktywności Słońca, wynikającego z ruchu obrotowego Słońca (25-31 dni) wokół jego osi, nachylonej pod kątem 82°45' do ekliptyki. Fale chłodu ($\Delta T < 0$) i ciepła ($\Delta T \ge 0$) zdefiniowano jako odchylenia ΔT średnich dobowych zmierzonych wartości temperatury (T) od sinusoidy regresji f(t) o okresie 365,25 dni.

W rozdziale VII. *Rekonstrukcja i prognoza zmian klimatu Ziemi w czasie od* -1 000 000 BP do 1 000 000 AD przedstawiono zmiany wiekowe klimatu Ziemi według zmian promieniowania słonecznego na równoleżniku φ = 65°, izotopu tlenu δ^{18} O w rdzeniu lodowych wyspy Devon (od -500 000 BP do 500 000 AD) i zawartości substancji organicznych (%) w Jez. Gościąż. (od -25 000 BP do 25 000 AD).

Do ostatnich rozdziałów należą: VIII. *Zakończenie* i IX. *Literatura* oraz *Załącznik* 1 i *Załącznik* 2.

7.2. Postęp badań zmian klimatu Ziemi w ostatnim tysiącleciu (X-XXI)

Zmiany klimatu Ziemi i ich przyczyny według promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$, izotopu tlenu δ^{18} O w rdzeniu lodowym z wyspy Devon, substancji organicznych w polskich jeziorach, danych dendrologicznych, meteorologicznych, astronomicznych i historycznych określono w tomie 36 *Atlasu*:

 Boryczka J, Stopa-Boryczka M., 2017, Atlas wspólzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXVI. Postęp badań zmian klimatu Ziemi w ostatnim tysiącleciu (XI-XXI), (red.: K. Błażejczyk, M. Stopa-Boryczka, J. Boryczka, .J. Wawer, W. Żakowski), Wyd. UW, Warszawa, ss. 408.

Dużo miejsca poświęcono weryfikacji dotychczasowych prognoz zmian klimatu Europy i nowym prognozom temperatury powietrza.

Na początku przedstawiono Zmiany klimatu Ziemi według cykli parametrów orbity eliptycznej (rekonstrukcja od 1 miliona lat temu i prognoza na przyszły 1 milion lat) (rozdz. II) według wyznaczonych dobowych sum promieniowania słonecznego I (MJ·m⁻²) w lecie (VI-VIII) i w miesiącach marzec-wrzesień (III-IX) na górnej granicy atmosfery, wzdłuż równoleżnika $\varphi = 65^{\circ}$ N. W obliczeniach sum promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$ posłużono się teorią M. Milankoviča (1930). Przyjęto zakres zmian i długości cykli: mimośrodu orbity Ziemi ($0 \le e \le 0,066$) – 100 000 lat (zamiast 92 000 lat), nachylenia osi Ziemi do płaszczyzny ekliptyki ($21^{\circ}58' \le \epsilon \le 24^{\circ}36'$) – 40 000 lat oraz długości ekliptycznej peryhelium względem punktu równonocy wiosennej (Ω) –21 000 lat.

Okresy zbliżone, tj. 23 000, 42 000 i 100 000 lat, wykryto w zmianach izotopu tlenu ¹⁸O zawartego w węglanach wapnia osadów głębokomorskich (Hays i in., 1976).

Obliczenia sum promieniowania słonecznego w poszczególnych miesiącach w przedziale czasu -100 $000 \le t \le 100 000$ (jednostką czasu *t* jest 100 lat) wykonano z zastosowaniem programu Excel 2007 (rys. 1).

Rys. 1. Zmiany sum promieniowania słonecznego w okresie marzec-wrzesień (III-IX) na równoleżniku $\varphi = 65^{\circ}$ N w ciągu ostatnich -100 000 lat, z prognozą do 100 000 lat (1900 AD, t = 0)(Boryczka, 2015) **Fig. 1.** Changes in the sums of solar radiation in the period March-September (III-IX) at the paralel $\varphi = 65^{\circ}$ N in the last -100,000 years, with a forecast up tu 100,000 years (1900 AD, t = 0)(Boryczka, 2015)

Ostatnie zlodowacenie Ziemi wystąpiło podczas ostatniego głębokiego minimum ($t_{min} = -22000$ lat temu, $I_{min} = 5784,871 M Jm^{-2}$) sum promieniowania słonecznego w miesiącach marzec-wrzesień. Natomiast holoceńskie ocieplenie (optimum klimatu) przypada na ostatnie lokalne "rozległe" maksimum ($t_{max} = -11000$ lat BP, $I_{max} = 6815,937 M Jm^{-2}$) sum promieniowania słonecznego w okresie marzec-wrzesień.

Zmiany sum promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$ w lecie (VI-VIII) i w okresach maj-lipiec (V-VII) oraz marzec-wrzesień (III-IX) w przedziale czasu: -1000 000 $\leq t \leq$ 1000 000 lat i -100 000 $\leq t \leq$ 100 000 lat przedstawiono na wykresach.

Zmianom klimatu Ziemi poświęcono również kolejny rozdz. III. Rekonstrukcja (od -500 000 lat temu) i prognoza (do 500 000 lat AD) zmian klimatu Ziemi według zawartości izotopu tlenu $\delta^{18}O$ w rdzeniach lodowych z wyspy Devon i Grenlandii środkowej.

W widmie oscylacji wskaźnika izotopu tlenu δ^{18} O w rdzeniu lodowym z wyspy Devon w przedziałach $0 < \Theta < 40\ 000 i\ 40\ 000 < \Theta < 120\ 000$ lat zawiera 11 "najsilniejszych" (istotnych na poziomie 0,01, $F_{obl} > 7,020$) cykli : 4500, 4700, 6200, 7300, 8700, 11300,16700, 24700, 45900, 58700 i 86100 lat. Trzy okresy : 24700 lat, 45900 lat i 86400 lat są zbliżone do okresów zmian długości ekliptycznej perihelium, nachylenia płaszczyzny orbity (ε) i mimośrodu eliptycznej orbity Ziemi (*e*).

Wypadkową nakładania się tych 11 cykli w przedziale czasu *t* od -500 000 BP do 500 000 AD i od -200 000 BP do 100 000 AD ilustrują odpowiednie rysunki.

Interesujące jest porównanie zawartości izotopu tlenu $\delta^{18}O$ w rdzeniu lodowym z wyspy Devon otrzymanych z interferencji najsilniejszych 11 cykli Θ z sumami promieniowania słonecznego na równoleżniku $\phi = 65^{\circ}$ N w okresie III-IX. Synchroniczność zmian promieniowania słonecznego na równoleżniku $\phi = 65^{\circ}$ N i zawartości izotopu tlenu $\delta^{18}O$ w rdzeniu lodowym z wyspy Devon można stwierdzić głównie w przedziale czasu *t* od -120 000 BP do 35 000 AD.

W rekonstrukcji klimatu w ostatnich dwóch tysiącleciach (w latach 0-1986) i w prognozach wykorzystano zawartość izotopu tlenu δ^{18} O w części 0-1986 rdzenia lodowego z wyspy Devon . Zmiany klimatu Półkuli Północnej określa Interferencja 10 "najsilniejszych" ($F_{obl} > 1,553$) cykli izotopu tlenu δ^{18} O: 13,0, 18,0, 31,5, 39,5, 67,0, 168,0, 233,0, 316,5, 510,0 i 921,5 lat (ze składnikiem liniowym).

Opracowano też prognozy zmian klimatu w XXI-XXII wieku na podstawie zawartości izotopu tlenu δ^{18} O w ośmiu rdzeniach lodowych pobranych z Grenlandii środkowej.

Duże znaczenie poznawcze ma rozdział IV. Ochłodzenia i ocieplenia klimatu Europy w holocenie i ich przyczyny według substancji organicznych, węglanów wapnia i tlenków żelaza zdeponowanych w sadach jeziornych.

W jego podrozdziale 4.5. Holoceńskie ochłodzenia i ocieplenia klimatu i ich przyczyny według izotopu tlenu δ^{18} O w rdzeniu lodowym z wyspy Devon oraz składu chemicznego osadów w Jez. Wikaryjskim i Jez. Gościąż) wykazano, że przyczyną holoceńskiego ocieplenia klimatu był wzrost sum promieniowania słonecznego w miesiącach marzec-wrzesień, wywołany zmianami orbity Ziemi.

Należy zauważyć "równoległość" przebiegów wiekowych (od -12 000 lat temu): substancji organicznych (%), węglanów wapnia (CaCO₃) i tlenków żelaza (Fe₂O₃), zdeponowanych w osadach Jez. Gościąż, z sumami promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$ w okresie marzec-wrzesień. (rys. 2).

Maksima wykresów wielomianów regresji 3-go stopnia względem czasu *t* pokrywają się z "rozległym" maksimum sum promieniowania słonecznego w miesiącach III-IX.

Rys 2. Zmiany zawartości substancji organicznych w jeziorze Gościąż I w czasie -12750 $\le t \le 0$ w odniesieniu do sum promieniowania słonecznego w okresie marzec-wrzesień na równoleżniku $\varphi = 65^{\circ}$ N **Fig. 2.** The change of the organic substance content in Lake Gościąż during -12750 $\le t \le 0$ in reference to the sums of solar radiation in the period March-September at the paralel $\varphi = 65^{\circ}$ N

Daty holoceńskich ociepleń klimatu według izotopu tlenu δ^{18} O 50- (średnich konsekutywnych 50-warstwowych) w rdzeniu lodowym z wyspy Devon w przedziale czasu: -10 000 $\leq t \leq 0$ lat BP (rys. 3) są przesunięte (późniejsze) względem maksimów temperatury w Grenlandii w holocenie określonej przez R.B. Alley'a (2000) na podstawie stosunku izotopu tlenu (δ^{18}) w rdzeniu lodowym GISP2.

Rys. 3 Zmiany izotopu tlenu δ^{18} O 50- (wyspa Devon) w przedziale czasu: -10 000 < t < 0 lat BP **Fig. 3.** Changes of isotope δ^{18} O 50- (Devon Island) in the time frame: -10 000 < t < 0 years BP

Teoria M. Milankoviča (1930) nie wyjaśnia jednak przyczyn holoceńskich ochłodzeń i ociepleń klimatu (od 11 700 lat temu), ze względu na bardzo długie cykle zmian parametrów orbity Ziemi (21 000, 40 000, 92 000 lat (lub 100 000 lat).

Istotne znaczenie dla wyjaśnienia przyczyn ochłodzeń i ociepleń klimatu w holocenie ma wykrycie w widmach zmiennych sedymentologicznych takich samych okresów, które są obecne w widmach parametrów Układu słonecznego. Świadczy to, że okresowe zmiany substancji organicznych (%) zdeponowanych w osadach Jez. Wikaryjskiego i Jez. Gościąż oraz węglanów wapnia (C_aCO₃) i tlenków żelaza (Fe₂O₃) w osadach Jez. Gościąż (od 10 000 lat temu) są spowodowane ruchem największych planet wokół Słońca. Podobnie okresy (krótkie) izotopu tlenu δ^{18} O w rdzeniu lodowym z wyspy Devon także świadczą o astronomicznych przyczynach holoceńskich wahań klimatu

Holoceńskie ochłodzenia i ocieplenia od -10 380 lat temu do teraźniejszości (do *t*= 0 BP czyli do roku 1950 AD) określono także według zmian średnich konsekutywnych 10- warstwowych substancji organicznych w Jez. Gościąż.

O dużych ochłodzeniach i ociepleniach klimatu w Europie w okresie 0 n.e - XX wieku świadczą roczne przyrosty drzew rosnących w Europie. W rozdziale V *Rekonstrukcja zmian klimatu Europy w dwóch ostatnich tysiącleciach (0-XX) i prognoza w XXI-XXV według danych dendrologicznych* przedstawiono zmiany klimatu Europy na podstawie szerokości słojów 13 drzew z obszaru Europy (3 sosny, 3 świerki, 1 modrzew, 1 jodła i 5 dębów) według interferencji cykli.. Za wyjątkowy pod względem termicznym uznano ten rok, w którym grubość słoja danego drzewa (*d*) różni się od średniej wszystkich jego słojów (d_{sr}) (od średniej wieloletniej) co najmniej o 2 odchylenia standardowe (σ) zgodnie z definicją: $d \leq d_{sr}$ -2 σ – wyjątkowo zimny (WZ), $d \geq d_{sr}$ +2 σ – wyjątkowo ciepły (WC).

Przedstawiono też wahania klimatu według interferencji cykli F(t) średniej grubości słojów 3 sosen (*Pinus* sylvestris): Forfjorddalen (877-1994, Norwegia), Karhunpesakivi (1398-1993, Finlandia), Kola (1577-1997, Rosja) i 4 dębów (*Quercus petraea*): Ardeny (1118-1986, Belgia), Bodensee (1275-1986, Holandia), Bourgogne (681-1991, Francja), Pomorze wschodnie (966-1985, Polska) rosnących w Europie w ostatnich dwóch tysiącleciach z prognozą do roku 2500 (0 n.e.-2500).

O wahaniach klimatu Europy świadczą również zmiany średniej grubości słojów z 11 drzew (3 sosny, 2 świerki, 1 modrzew, 1 jodła, 4 dęby) w latach 0-2500 według interferencji cykli F(t).

Interesujące są także daty minimów wiekowych (t_{min}) rocznych przyrostów najstarszych drzew rosnących w Europie: sosna *Pinus sylvestris* – Forfjorddalen (877-1994, Norwegia), dąb *Quercus petraea* – Bourgogne (681-1991, Francja), dąb *Quercus petraea*) – Ardeny (1118-1986, Belgia) i modrzew *Larix decidua*) – Les Merveilles 2 (988-1974, Francja). Są to minima szerokości słojów $d_{\min} \le d_{sr} - 2\sigma$) mniejsze od średniej arytmetycznej (d_{sr}) o 2 odchylenia standardowe (σ), które wskazują bardzo mroźne zimy.

W rozdziale VI Anomalie termiczne w Europie według danych meteorologicznych, dendrologicznych i źródel historycznych w dwóch tysiącleciach (0 n.e. – XXI) stwierdzono m.in., że w Warszawie w latach 1779-2015) wystąpiło 39 mroźnych zim, jedenaście bardzo mroźnych zim i 4 najbardziej mroźne zimy w latach: 1799 (-8,6), 1830(-9,2), 1838 (-8,6), 1940 (-8,8 °C), według definicji: $T \leq T_{\rm sr} - \sigma$ – mroźne zimy, $T \leq T_{\rm sr} - 2\sigma$ – bardzo mroźne zimy, $T \leq T_{\rm sr} - 2,5\sigma$ – najbardziej mroźne zimy, gdzie średnia temperatura $T_{\rm sr} = -2,454$ °C, a odchylenie standardowe $\sigma = 2,368$ °C.

O wpływie aktywności Słońca na klimat Europy świadczą np. proste regresji średniej grubości słojów (d) z 13 drzew (3 sosny, 3 świerki, 1 modrzew, 1 jodła, 5 dębów i liczb Wolfa (W) o tendencji rosnącej (rys. 4):

$$d = 0,006174t + 0,4794, R^2 = 0,203 W = 0,091793t - 120,312, R^2 = 0,188 (4)$$

Rys. 4. Synchroniczne wahania średniej szerokości słojów 13 drzew rosnących w Europie (d) i liczb Wolfa (W) w latach 1700-2015 (średnie konsekutywne 11-letnie)

O wpływie aktywności Słońca na klimat Europy świadczy również koincydencja głównych minimów średniej grubości słojów z 13 drzew rosnących w Europie z minimami wiekowymi liczb Wolfa: Maunder minimum (1672-1699) i Daltona minimum (1790-1830) (rys. 5).

Rys. 5. Zmiany średniej szerokości słojów 13 drzew rosnących w Europie i (liczb Wolfa) w latach 1598-1967 (11- – średnie konsekutywne 11-letnie)

Fig. 5. Changes of the average tree ring widths of 13 (B)trees growing in Europe (and Wolf numbers)in the years 1598-1967 (11- year moving average)

Fig. 4. Synchronous fluctuations of the average tree ring widths of 13 of trees growing in Europe (d) and Wolf numbers (W) in the years 1700-2015 (11-year moving average)

Kolejne cztery rozdziały poświęcono ocenie sprawdzalności dotychczasowych prognoz na podstawie wyników pomiarów: Oscylacji Północnoatlantyckiej (NAO) – z lat 1951-2015 (rozdz. VII), temperatury powietrza w Warszawie (rozdz. VIII) – 1951-2015, temperatury powietrza w innych miejscowości Europy (rozdz. IX) –1951-2010 i opadów atmosferycznych w Warszawie (rozdz. X) –1951-2010

W rozdziale VII. Weryfikacja prognoz zmian Oscylacji Północnoatlantyckiej (NAO) w latach 1998-2100 według pomiarów z lat 1825-1997 (Atlas, t. XV, 2001) zweryfikowano prognozy zmian wskaźnika Oscylacji Północnoatlantyckiej NAO w latach 1998-2100 opracowanych w tomie 15 Atlasu:

 Boryczka J., Stopa-Boryczka M., Baranowski D., Błażek E., Skrzypczuk J., 2001, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XV, Prognozy zmian klimatu miast Europy (rozdz. III. Wpływ cyrkulacji atmosferycznej na klimat Europy) s. 39-46. Wyd. UW, ss. 249

Prognozy wskaźnika Oscylacji Północnoatlantyckiej *NAO* w poszczególnych miesiącach, porach roku i roku otrzymano według wypadkowej *F*(*t*) interferencji cykli, Najlepsza zgodność zmierzonych wartości wskaźnika *NAO* w latach 1998-2015 z prognozowanymi *F*(*t*) według danych 1825-1997 występuje w zimie (rys. 6). Funkcja aproksymująca *F*(*t*) – to wypadkowa interferencji 12 cykli (od 4,7 do 105,2 lat obecnych w widmie oscylacji) ze składnikiem liniowym *F*(*t*) = 1,482773 -0,000494 *t* + ... o współczynniku korelacji wielokrotnej *R*= 0,606:

 Θ
 4,7
 5,0
 5,8
 7,8
 8,3
 8,8
 11,3
 12,5
 15,5
 37,1
 71,5
 105,2

 R
 0,170
 0,220
 0,180
 0,272
 0,237
 0,195
 0,134
 0,136
 0,165
 0,158
 0,170
 0,158

Na uwagę zasługują synchroniczne wahania zmierzonych wartości wskaźnika NAO_i i prognozowanych F(t) na lata 1998-2015.Współczynnik korelacji między wartościami zmierzonymi NAO i w latach 1998-2015 i prognozowanymi F(t) wynosi r =0,489 (rys. 6).

Rys. 6. Zmiany y wskaźnika Oscylacji Północnoatlantyckiej *NAO* w zimie (XII-II) w latach 1990-2025; F(t) – obliczone (ze składnikiem liniowym) z prognozą na lata 1998-2015, *NAO*_i – wartości zmierzone w latach 1998-2015,

Fig. 6. Secular changes of North Atlantic Oscillation index (*NAO*) in winter (XII-II) in the years 1990-2025; F(t) – calculated values (including the linear component), with a forecast for the years 1998-2015, *NAO*_i – values measured in the years 1998-2015

Jeszcze większa koincydencja ekstremów występuje w przypadku 3-letnich średnich konsekutywnych NAO₃ Współczynnik korelacji między wartościami zmierzonymi NAO₃ i prognozowanymi F(t) wynosi $r_3 = 0,601$.

W rozdziale VIII. Weryfikacja prognoz temperatury powietrza w Warszawie w miesiącach, porach roku i roku w 35-leciu 1981-2015 (1984). i 25-leciu 1991-2015 (2000) zweryfikowano dwojakiego rodzaju prognozy zmian temperatury powietrza w Warszawie z 1984 i 2000 roku.

Najpierw w podrozdziale 8.1. Weryfikacja prognoz przebiegu rocznego temperatury powietrza w Warszawie w latach 1980-2100 wg modelu rekonstrukcyjnoprognostycznego (w 30-leciu 1981-2015) zweryfikowano prognozy temperatury powietrza w Warszawie na lata 1980-2100 według danych z lat 1779-1979 (Obserwatorium Astronomiczne), opracowane po raz pierwszy na podstawie tzw. modelu rekonstrukcyjno-prognostycznego wieloletnich zmian temperatury powietrza (Boryczka 1984, wzór 133):

 Boryczka J., 1984, Model deterministyczno-stochastyczny wielookresowych zmian klimatu, Rozprawy Uniwersytetu Warszawskiego, Nr 234, Wyd. UW, Warszawa, ss. 272.

Weryfikacja obecna tego modelu polega przede wszystkim na porównaniu 35-letniej serii wyników pomiarów temperatury powietrza (średnich konsekutywnych 3-letnich w styczniu i lipcu) w Warszawie-Okęcie (*T*) z wartościami obliczonymi f(t) – na lata 1980-2015 (rys. 6). Na ogół jest dobra zgodność między minimami i maksimami temperatury powietrza w 35-leciu 1981-2015, według pomiarów i prognoz. Współczynnik korelacji r=0,262 w styczniu jest zbliżony do wartości krytycznej $r_{0,05} = 0,324$, Natomiast w lipcu, współczynnik korelacji r = 0,367 jest istotny na poziomie 0.05 ($r_{0.05} > 0.324$).

W podrozdziale 8.2. Weryfikacja prognoz przebiegu rocznego temperatury powietrza w Warszawie w latach 1991-2100 (w miesiącach, sezonach i roku) (w 25-leciu 1991-2015) sprawdzono prognozy zmian temperatury powietrza w Warszawie na lata 1991-2100 opracowane na podstawie danych z Obserwatorium Astronomicznego z lat 1779-1990 (Atlas, t. XIV; wzory s. 110-119, wykresy s. 129-147):

 Boryczka J., Stopa-Boryczka M., Lorenc H., Kicińska B., Błażek E., Skrzypczuk J., 2000, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XIV Prognoza zmian klimatu Warszawy w XXI wieku, ss. 209

Porównano średnie wartości temperatury powietrza w różnych przedziałach czasu (miesiące, pory roku, rok) zmierzone w Warszawie na Okęciu (T) z prognozowanymi f(t) na lata 1990-2015.

Na przykład w zimie, trendy czasowe temperatury powietrza w Warszawie T = f(t) są wypadkową nakładania się 12 cykli obecnych w widmie temperatury, w tym najdłuższych 113.1 lat i 218.3 lat:

f(t) = -2,634 +

+0,5148sin (2 π /2,6-1,327)+0,5715sin (2 π t/3,5+0,5523)+0,6238sin (2 π t/5,2 + 0,05656)+

+0,4422 sin $(2\pi t/5,7+2,486)$ +0,7067sin $(2\pi t/7,7-0,7303)$ +0,7349sin $(2\pi t/8,3-2,370)$ +

+0,4829 sin $(2\pi t/8,7 - 0,3237)$ +0,4078sin $(2\pi t/12,9+0,1328)$ +0,456sin $(2\pi t/15,2+2,318)$ +

+0,4940 sin $(2\pi t/18,0-3,058)$ +0,3645sin $(2\pi t/113,1+2,040)$ +0,8946sin $(2\pi t/218,3+3,073)$ (5)

O dobrej zgodności wyników pomiarów (*T*) na Okęciu z prognozowanymi zmianami temperatury powietrza w zimie na lata 1991-2015 według interferencji cykli f(t)świadczy współczynnik korelacji r = 0.456 większy od wartości krytycznej $r_{0.05} = 0,380$ na poziomie istotności 0.05. W przypadku średnich konsekutywnych 3-letnich współ-

czynnik korelacji r = 0.516 jest znacznie większy i istotny na poziomie 0,01 ($r_{0.01} = 0,487$). Synchroniczne są wahania zmierzonych wartości temperatury powietrza w Warszawie-Okęcie w zimie (średnich konsekutywnych 3-letnie w 25-leciu 1991-2015 i prognozowanych f(t) (rys. 7).

Rys. 7. Porównanie zmierzonych wartości temperatury powietrza w Warszawie-Okęcie w zimie, T- średnich konsekutywnych 3-letnich w 25-leciu 1991-2015 z prognozowanymi f(t) **Fig. 7.** Comparison of measured air temperature values in Warsaw-Okęcie in Winter (T- 3-year moving average) during the 25-year period 1991-2015, with predicted values f(t)

Celem rozdziału IX. Weryfikacja prognoz zmian temperatury powietrza w Europie w latach 1970-2100 opublikowanych w Atlasie t. XVII (2003), t. XIX (2005), t. XX-XXI (2007) jest weryfikacja prognoz zmian temperatury powietrza do roku 2100 w różnych miejscach Europy, opublikowanych w trzech tomach czasopisma Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, dotyczących zimy i lata (t. XVII), miesięcy styczeń i lipiec (t. XIX) oraz średniej rocznej (t. XX-XXI):

- tom XVII. Mroźne zimy i upalne lata w Polsce, 2003, Wyd. UW, ss.297; rozdz. V Zmiany temperatury powietrza w Europie w XVIII-XX wieku. Prognozy po rok 2100, str. 31-171) (Boryczka J., Stopa-Boryczka M., Baranowski D., Kirchenstein M., Błażek E., Skrzypczuk J)
- tom XIX. Cechy termiczne klimatu Europy, 2005, Wyd. UW, ss.184; rozdz. IV. Ochłodzenia i ocieplenia klimatu Europy w ostatnich stuleciach, str.. 35-131 (Boryczka J., Stopa-Boryczka M., Pietras K., Bijak S., J., Błażek E., Skrzypczuk J)
- tom. XX-XXI. Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według danych dendrologicznych, 2007, Wyd. UW, ss. 226; rozdz. III. Ochłodzenia i ocieplenia klimatu Europy w XIX-XXI wieku, str. 97-126 (Stopa-Boryczka M., Boryczka J., Bijak S., Cebulski R., Błażek E., Skrzypczuk J.)

Zweryfikowano prognozy zmian temperatury powietrza (do roku 2100) w 10 miastach wybranych spośród 40 miejsc Europy: Anglia środkowa (1659-1993) – Greenwich (1659-1969), Paryż (1767-1995), Berlin (1769-1990), Warszawa (1779-1998 i 1779-2002), Moskwa (1780-2002), Sztokholm (1756-1994), Zurych (1864-1970), Rzym (1811-1989), Wiedeń (1775-2002) i Kijów (1812- 2002).

Najbardziej wiarygodne okazały się prognozy zmian temperatury powietrza w Rzymie w lipcu według interferencji 8 cykli: Θ lat 3,9 4,4 5,9 8,2 9,2 10,9 20,2 30,7 64,1 ze składnikiem liniowym $F(t) = 24,40522+0,00004 t,+ \dots, R=0,605$. Koincydencja ekstremów występuje przede wszystkim w przypadku zmierzonych wartości temperatury powietrza (średnich 3-letnich konsekutywnych T_3) i prognozowanych F(t) (rys. 8)

Rys. 8 Zmiany średniej temperatury powietrza w lipcu w Rzymie (1990-2012); T_3 – wartości zmierzone, średnie konsekutywne 3-letnie; F(t)) – wartości obliczone, z prognozą na lata 1991-2012 **Fig. 8** Changes of mean air temperature in July in Rome (1990-2012); T_3 – measured values, 3-year moving average, Ft) – calculated values, with forecasts for the years 1991-2012

Współczynnik korelacji r = 0,578 wartości zmierzonych *T* i prognozowanych *F*(*t*) jest większy od wartości krytycznej $r_{0,01} = 0,537$ na poziomie 0,0.1). Jeszcze większa jest koincydencja ekstremów między średnimi konsekutywnymi 3-letnimi wartościami temperatury powietrza w lipcu w Rzymie w latach 1990-2012 i prognozowanymi *F*(*t*). Współczynnik korelacji między $T_{3.}$ i *F*(*t*) wynosi r = 0,612 i jest istotny prawie na poziomie 0,001 ($r_{0,001} = 0,640$

Synchroniczne są wahania średnich zmierzonych wartości temperatury powietrza w Warszawie (Okęcie) w zimie (XII-II) i lecie (VI-VIII) w 18-leciu 1999-2016 z prognozowanymi np. w zimie według interferencji cykli f(t) i F(t); ze składnikiem liniowym F(t) = -25,9473 t +0,01187 t + ..., R = 0,480:

Θ lat	7,1	10,3	12,9	15,3	18,1	20,1	22,5	25,2	28,1	32,5	39,3	73,8	113,4
b ⁰C	0,418	0,300	0,489	0,442	0,442	0,163	0,233	0,084	0,015	0,109	0,313	0,223	0,520
С	2,452	1,711	1,177	1,194	1,933	0,385	-2,565	-1,320	0,127	1,675	-2,512	1,941	3,139

W zimie współczynnik korelacji r = 0,494 między średnimi wartościami zmierzonymi T_i i prognozowanymi f(t) jest większy od wartości krytycznej poziomu istotności 0,05 ($r_{0,05} = 0,444$, n=18). Natomiast w zimie współczynnik korelacji $r_3 = 0.576$ między średnimi konsekutywnymi 3-letnimi wartościami zmierzonymi T_3 i prognozowanymi f(t) na lata 1999-2016 jest istotny na poziomie 0,01 ($r_{0,01} = 0,561$) (rys. 9).

Rys. 9 Zmiany średniej temperatury powietrza w zimie w Warszawie (Okęcie, 1999-2016); T_3 – wartości zmierzone, średnie konsekutywne 3-letnie, F(t) – wartości obliczone (Obserwatorium Astronomiczne, z prognozą na lata 1999-2016

Fig. 9. Changes of mean air temperature in winter in Warsaw (Okęcie, 1999-2016); T_3 – measured values, 3-year moving average, F_t) – calculated values (Astronomical Observatory, 1779-1998), with forecast for the years 1999-2016

W Moskwie, ze względu na małą liczebność (n=10) o poprawności prognoz temperatury powietrza w Moskwie świadczy przede wszystkim sprawdzenie czy wahania są synchroniczne – czy występuje koincydencja ekstremów (minimów i maksimów) w przebiegu wieloletnim (2003-2012).

W przypadku zimy, lata i średniej rocznej temperatury w Moskwie, współczynniki korelacji są ujemne (zima r = -0,354, r = -0,288, rok r = -0,016. W styczniu współczynniki korelacji r = 0,335 między T_i i f(t) nie jest istotny na poziomie 0,10 (n = 10). Natomiast w lipcu współczynnik korelacji r = 0,753 jest istotny na poziomie 0,01, a $r_3 = 0,907$ między T_3 i f(t) jest istotny na poziomie 0,001 (rys. 10).

W Moskwie w lipcu prognozowano według interferencji cykli ze składnikiem liniowym F(t) = 12,53531+0,003175 t,+ ..., R=0,602 i bez składnika liniowego f(t):

Θ lat	5,7	6,2	7,0	10,1	13,2	21,1	51,6	84,7	169,1
b ⁰C	0,5373	0,2873	0,378	0,4691	0,2894	0,4044	0,3227	0,8211	0,9591
С	-3,0983	2,2778	1,4603	1,078	-1,8974	2,6927	-1,8953	1,9748	1,846

Celem rozdziału X. Weryfikacja prognoz opadów atmosferycznych w Warszawie w 30-leciu 1981-2010 (1993) i 20-leciu 1991-2010 (2000) (rozdz. X) jest weryfikacja prognoz zmian sum opadów atmosferycznych w Warszawie opracowanych w Zakładzie Klimatologii UW (Boryczka 1993, Boryczka i in. 2000).

W podrozdziale 10.1. Weryfikacja prognoz przebiegu rocznego opadów atmosferycznych w Warszawie w latach 1980-2100 według pomiarów z lat 1813-1979 sprawdzono prognozy zmian sum opadów atmosferycznych w Warszawie w 30-leciu 1981-2010, opublikowane w książce:

 Boryczka J., 1993, Naturalne i antropogeniczne zmiany klimatu Ziemi w XVII-XXI wieku, Wyd. UW, Warszawa, ss. 400.

Rys. 10. Zmiany średniej temperatury powietrza w lipcu w Moskwie (2003-2012), T_3 – wartości zmierzone, T_3 – średnie konsekutywne 3-letnie (2003-2012); F(t) – wartości obliczone, z prognozą na lata 2003-2100 **Fig. 10.** Changes of mean air temperature in July in Moscow (2003-2012); T_i – measured values, T_3 – 3-year moving average (2003-2012); F(t) – calculated values, with forecasts for the years 2003-2012

Trend czasowy F(t) (wzór 22', str. 300 i.306) opisuje zmiany miesięcznych sum opadów atmosferycznych w Warszawie w latach 1813-1980. Na przykład wzór empiryczny F(t) (ze składnikiem liniowym at = 0,00336t) uwzględnia interferencję 15 cykli opadów: 0,50, 1,00, 1,25, 1,75 2,50, 2,83, 3,50,4,25, 5,33, 6,00, 11,67, 16,33, 19,17, 57,33 i 114,0 lat, wyznaczonych na podstawie wyników pomiarów w latach 1813-1979.

Oceniono synchroniczność przebiegów zmierzonych sum opadów w Warszawie i prognozowanych z wyprzedzeniem 30 lat (1980-2010).

Prognozy zmian sum opadów i ich weryfikację opracowano na podstawie wyników pomiarów w Warszawie: Obserwatorium (1813-1979) i Okęcie (1951-2010).

Weryfikacja obecna modelu empirycznego polega przede wszystkim na porównaniu 30-letniej serii wyników pomiarów opadów w Warszawie (sum miesięcznych (P) z prognozowanymi F(t) na lata 1980-2010. Na ogół minima i maksima roczne miesięcznych sum opadów zmierzonych P i prognozowanych F(t) pokrywają się.

Wiarygodne są też prognozy zmian opadów atmosferycznych w Warszawie w latach 1991-2100 sprawdzone w podrozdziale 10.2. Weryfikacja prognoz opadów atmosferycznych w Warszawie na lata 1990-2100 – w 20-leciu 1990-2010 (z 2000 r.), opracowane na podstawie danych z Obserwatorium Astronomicznego z lat 1813-1990 i opublikowane w t. VIV Atlasu (wzory s. 110-119, wykresy s. 129-147):

 Boryczka J., Stopa-Boryczka M., Lorenc H., Kicińska B., Błażek E., Skrzypczuk J., 2000, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XIV Prognoza zmian klimatu Warszawy w XXI wieku, ss. 209

Trend czasowy f(t) sum opadów atmosferycznych w Warszawie np. w lecie (bez składnika liniowego $a_{t)}$ w latach 1813-1990 jest wypadkową nakładania się 5 cykli, w tym najdłuższych 54 i 122 lat.

$$f(t) = 218,0+25,224\sin\left(-1,741+\frac{2\pi}{6}t\right)+15,89\sin\left(-1,716+\frac{2\pi}{9}t\right)+$$

+19,14sin (-0,3370+ $\frac{2\pi}{13}t$)+8,843sin(1,717+ $\frac{2\pi}{54}t$)+7,5885sin (1,003+ $\frac{2\pi}{122}t$) (6)

Równania opisujące interferencję cykli opadów otrzymano przyjmując rok 1813 jako początek osi czasu t=0 (t = -113 - rok 1700, t = 287 - rok 2100)..

Porównano sumy opadów w różnych przedziałach czasu (miesiące, pory roku, rok) zmierzone w Warszawie na Okęciu (P) z prognozowanymi f(t) na lata 1990-2010.

Wahania zmierzonych sum opadów atmosferycznych w Warszawie-Okęcie (średnich konsekutywnych 3-letnich) i prognozowanych sum opadów na lata 1991-2010, według modeli f(t) przedstawiono na rys. 11.

Rys. 11. Porównanie zmierzonych w lecie sum (*P*i i średnich konsekutywnych 3-letnich P_3) opadów atmosferycznych w Warszawie (Okęcie) z prognozami (1990-2030) według modelu f(t)**Fig. 11.** Comparison of measured summer precipitation totals at Warsaw (Okęcie) (*P*i and 3-year running average P_3) with forecasts (1990-2030) prognostic model f(t)

W lecie, współczynniki korelacji r = 0,672 i $r_3 = 0,908$ sum letnich opadów atmosferycznych i średnich konsekutywnych 3-letnich sum w Warszawie (Okęcie) z prognozami (1990-2010) według modelu f(t) są wyjątkowo duże (istotne na poziomie 0.01 według testu t-Studenta..

W rozdziale XI. *Nowe prognozy zmian temperatury powietrza w Warszawie w XXI wieku według pomiarów z lat 1779-2015* opracowano rekonstrukcje (1700-1778) i nowe prognozy zmian temperatury powietrza w Warszawie w poszczególnych miesiącach, sezonach i roku w latach 2016-2100 na podstawie danych z lat 1779-2015.

Jeżeli minimum lokalne widma oscylacji temperatury powietrza było poza przedziałem $2.1 \le \Theta \le 250$ lat to w rekonstrukcji i prognozach na podstawie interferencji cykli (ze składnikiem liniowym F(t) i bez składnika liniowego f(t)) uwzględniono dodatkowo najdłuższy cykl $\Theta = 179$ lat (astronomiczny).

W lecie uwzględniono 10 cykli o długości Θ lat, amplitudzie *b* °C i fazie c ze składnikiem liniowym F(t) = 14.083182 + 0.001975 t + ... R = 0.590157:

Θ 3,9 7,1 15,6 19,1 30,9 37,2 54,6 73,8 114,3 179,0 b 0,3745 0,3188 0,2645 0,1981 0,1498 0,1242 0,1529 0,4627 0,0112 0,3363 -0,8151 1,3956 0,9342 -0,3418 3,1023 1,8529 -2,6696 -0,3313 -1,9874 0,6335 с

Prognozowane zmiany temperatury powietrza w Warszawie w lecie w latach 2016-2100 przedstawiono na rys. 12.

Rys. 12. Zmiany temperatury powietrza w Warszawie w lecie w latach 1951-2100, f(t) – wartości obliczone (z prognozą na lata 2016-2100), Ti – zmierzone na Okęciu (1951-2015) **Fig. 12.** Air temperature changes in Warsaw in summer in the years 1951-2100. f(t) – calculated values (with a forecast for the years 2016-2100), Ti – values measured in Okęcie (1950-2015)

W zimie w rekonstrukcji (1700- 1778) i prognozach zmian temperatury powietrza w latach 2016-2100 uwzględniono także 10 cykli obecnych w widmie oscylacji ze składnikiem liniowym $F(t) = -1.135666 \quad 0.004831 t + ... \quad R=0.546270$

Θ	3,3	5,2	8,3	15,3	18,1	22,3	41,6	77,4	118,5	179,0
b	0,5721	0,6327	0,8305	0,4634	0,4212	0,3067	0,3133	0,2856	0,5328	0,2904
С	-1,3331	-0,6587	1,9328	0,8738	1,4167	-1,4925	1,7833	-3,0465	1,7346	2,1469

Prognozowane zmiany temperatury powietrza w Warszawie w zimie w latach 2016-2100 przedstawiono na rys. 13.

Rys. 13. Zmiany temperatury powietrza w Warszawie w zimie w latach 1951-2100, F(t) – wartości obliczone (z prognozą na lata 2016-2100), Ti – zmierzone na Okęciu (1951-2015) **Fig. 13.** Air temperature changes in Warsaw in winter in the years 1700-2100, F(t) – calculated values (with a forecast for the years 2016-2100, Ti – values measured in Okęcie (1950-2015)

Wyniki pomiarów temperatury powietrza w Warszawie (1779-1979 – Obserwatorium Astronomiczne, 1951-2015 – Okęcie) pochodzą z archiwum Instytutu Meteorologii i Gospodarki Wodnej. Średnie miesięczne wartości z pozostałych stacji z lat 1951-2012 (tylko z Paryża do 2011) wzięto z bazy danych ze strony internetowej European Climate Assessment and Dataset (ECA&D): Londyn (Gatwick) (1951-2012, Paryż (1951-2011), Berlin (Dahlem)(1951-2012), Warszawa (Okęcie)(1951-2016), Moskwa (1951-2012), Sztokholm (951-2012), Zurych (1951-2012) Rzym (1951-2012), Wiedeń (1951-2012) i Kijów (1951-2012).

Niektóre dane zebrane do *Atlasu* pochodzą ze strony internetowej National Climatic Data Center stanowiącego część sieci GHCN. pod adresem:

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v2/v2.mean (notatnik).

Natomiast niektóre dane z lat wcześniejszych pobrano ze strony

http://data.giss.nasa.gov/gistemp/station_data/.

W weryfikacji prognoz zmian temperatury powietrza w Europie (zima, lato, styczeń, lipiec, rok) wykorzystano późniejsze wyniki pomiarów – średnie miesięczne wartości temperatury powietrza w 10 miejscowościach z lat 1951-2016:.

Zmiany aktywności Słońca w latach 1700-2010 określono na podstawie średnich miesięcznych liczb Wolfa w latach 1749-2010 (Royal Observatory of Belgium, 2011) i rocznych liczb Wolfa z lat 1700-1748 (Reznikov, 1982).

Dane o zawartości izotopu tlenu δ^{18} O w rdzeniach lodowych z półkuli północnej pochodzą z odwiertów: Greenland Ice Sheet Project, GISP, rdzeń B i D, Devon Ice Cap, National Climatic Data oraz Center National Snow and Ice Data Center. Dane dendrologiczne pochodzą ze strony internetowej: http://www. noaa.gov/paleo/treering.htm.

W weryfikacji prognoz temperatury powietrza w Warszawie w zimie wzięto także po uwagę modele globalnego ocieplenia w XXI wieku (ENSEMBLE, 2012).

UNIWERSYTET WARSZAWSKI WYDZIAŁ GEOGRAFII I STUDIÓW REGIONALNYCH

JERZY BORYCZKA, MARIA STOPA-BORYCZKA

XXXVI. POSTĘP BADAŃ ZMIAN KLIMATU ZIEMI W OSTATNIM TYSIĄCLECIU (XI-XXI)

atlas

WSPÓŁZALEŻNOŚCI PARAMETRÓW METEOROLOGICZNYCH I GEOGRAFICZNYCH W POLSCE

Warszawa 2017

SPIS TREŚCI (36)

Ι.	WPROWADZENIE	5
П.	ZMIANY KLIMATU ZIEMI WEDŁUG CYKLI PARAMETRÓW ORBITY ELIP-	-
	TYCZNEJ (REKONSTRUKCJA OD 1 MILIONA LAT TEMU I PROGNOZA NA	
	PRZYSZŁY 1 MILION LAT)	9
2.1.	Ważniejsze zdarzenia na Ziemi – sprzed 3 miliardów lat	9
2.2.	Ochłodzenia i ocieplenia klimatu Ziemi (od -1 mln temu) według teorii M. Milankoviča	11
2.3.	Rekonstrukcia (od -1 mln lat temu) i prognoza (do 1 mln lat AD) zmian klimatu Ziemi	
	według promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$ N	13
2.4.	Zmiany sum promieniowania słonecznego na równoleżniku φ=65° N w kolejnych	
	miesiącach marzec,, wrzesień	23
111.	REKONSTRUKCJA (OD -500 000 LAT TEMU) I PROGNOZA (DO 500 000 LAT	
	AD) ZMIAN KLIMATU ZIEMI WEDŁUG IZOTOPU TLENU č ¹⁸ O W RDZENIACH	
	LODOWYCH Z WYSPY DEVON I GRENLANDII SRODKOWEJ	31
3.1.	Rekonstrukcja (od -500 000 lat temu) i prognoza (do 500 000 lat AD) klimatu Półkuli	
	Połnocnej według zawartości izotopu tlenu $\delta^{(0)}$ w rdzeniu lodowym z wyspy Devon	31
3.2.	Zmiany klimatu w ostatnich dwu tysiącieciach, z prognozą do roku 2500 według	
33	Zawartości izotopu tienu 8 °O w rozeniu lodowym z wyspy Devon	35
5.5.	w rdzeniach lodowych, z Grenlandii środkowaj (1772-1086)	20
IV/	OCHLODZENIA I OCIEPIENIA KUMATU EUROPY W HOLOCENIE LICH	30
	PRZYCZYNY WEDŁUG SUBSTANCJI ORGANICZNYCH WEGLANÓW WAPNIA	
	I TLENKÓW ŻELAZA ZDEPONOWANYCH W OSADACH JEZIORORNYCH	45
4.1.	Rekonstrukcja (od -25 000 BP) i prognoza (do 25 000 AD) klimatu Europy – według	
	substancji organicznych zdeponowanych w osadach Jez. Wikaryjskiego	45
4.2.	Rekonstrukcja (od -25 000 bp) i prognoza (do 25 000 ad) klimatu Europy – według	
	substancji organicznych zdeponowanych w osadach Jez. Gościąż	49
4.3.	Rekonstrukcja (od -25 000 BP) i prognoza (do 25 000 AD) klimatu Europy – według	
	zawartości węglanu wapnia (C_aCO_3) w osadach Jez. Gościąż (od -12 750 lat temu)	52
4.4.	Rekonstrukcja (od -25 000 BP) i prognoza (do 25 000 AD) kilmatu Europy – według	55
15	Zawaliości i lienku zelaza (Fe ₂ O ₃) w osauach jez. Gościąz (ou -12750 lai leniu) Holoceńskie ochłodzenia i ocieplenia klimatu i ich przyczyny według izotopu tlenu	55
4.5.	δ^{18} O w rdzeniu lodowym z wyspy Devon oraz składu chemicznego osadów w Jez	
	Wikarviskim i Jez. Gościaż	58
V.	REKONSTRUKCJA ZMIAN KLIMATU EUROPY W DWÓCH OSTATNICH	
	TYSIĄCLECIACH (0-XX) I PROGNOZA W XXI-XXV WEDŁUG DANYCH	
	DENDROLOGICZNYCH	75
5.1.	Rekonstrukcja (od 0 n.e.) i prognoza (do roku 2 500) zmian klimatu Europy według	
	przyrostów rocznych sosny Pinus sylvestris (3 drzew)	77
5.2.	Rekonstrukcja (od 0 n.e.) i prognoza (do roku 2 500) zmian klimatu Europy według	
50	przyrostow rocznych – świerka <i>Piced ables</i> (3 drzew) Dekepetrukcje (ed. 0 p.e.) i przepaza (de reku 2 500) zmien klimetu Europy wodług	83
5.5.	rekonstrukcja (od. o n.e.) i prognoza (do roku z 500) zmian kilmatu Europy według	80
54	Rekonstrukcja (od. 0 n.e.) i prognoza (do roku 2 500) zmian klimatu Europy według	03
0.4.	przyrostów rocznych 5 debów Quercus petraea (4) i Quercus robur (1)	93
5.5.	Mroźne zimy w Europie w latach 681-2000 według minimów (d_{\min}) grubości słojów	
	drzew rosnących w Europie	103
5.6.	Zależność szerokości słojów dębów w Polsce od temperatury powietrza i opadów	
	atmosferycznych	105
VI.	ANOMALIE TERMICZNE W EUROPIE WEDŁUG DANYCH METEOROLO-	
		107
61	Nikle 11 100 i 180 lat temperatury nowietrze szerekeści słojów drzew	107
0.1.	i aktywności Słońca	107
6.2.	Svnchroniczne wahania temperatury powietrza. NAO. szerokości słoiów drzew w	
	Europie i aktywność Słońca	111

6.3	Synchroniczne wahania grubości słojów drzew w Europie, aktywności Słońca i momentu bezwładności <i>B</i> _z planet Układu Słonecznego względem płaszczyzny eklintyki	114
6.4.	Mroźne zimy w Warszawie w latach 1779-2015	119
6.5.	Mroźne zimy w Polsce w X-XVI wieku według źródeł historycznych	120
VII.	WERYFIKACJA PROGNOZ ZMIAN OSCYLACJI PÓŁNOCNOATLANTYCKIEJ	
	(NAO) W LATACH 1998-2100 WEDŁUG POMIARÓW Z LAT 1825-1997 (ATLAS, T. XV, 2001)	125
7.1.	Kierunki adwekcji mas powietrza w Europie (typy cyrkulacji wg Wangenheima i Osu-	405
7.0	CNOWSKIEJ-KIEIN)	125
7.2.	Zjawisko El Milo	129
7.3	Prognozy zmian Oscylacji Połnochoatiantyckiej (NAO) w XXI wieku według pomiarów z lat 1825 1997	120
74	Wervfikacia prognoz zmian Oscylacii Północnoatlantyckiej (NAO) w latach	130
7.4.	1998-2100 według pomiarów z lat 1998-2015	134
VIII.	WERYFIKACJA PROGNOZ TEMPERATURY POWIETRZA W WARSZAWIE	101
	W MIESIĄCACH, PORACH ROKU I ROKU W 35-LECIU 1981-2015 (1984)	
	I 25-LECIU 1991-2015 (2000).	173
8.1.	Weryfikacja prognoz przebiegu rocznego temperatury powietrza w Warszawie	
	w latach 1980-2100 wg modelu rekonstrukcyjno-prognostycznego (w 30-leciu	170
82	1901-2013) Werufikacia prognaz przebiegu rocznego temperaturu powietrza w Warszawie	1/3
0.2.	w latach 1991-2100 (w miesiacach, sezonach i roku) (w 25-leciu 1991-2015)	175
IX.	WERYFIKACJA PROGNOZ ZMIAN TEMPERATURY POWIETRZA W EUROPIE W	170
	LATACH 1970-2100 OPUBLIKOWANYCH W ATLASIE T. XVII (2003), T. XIX	
	(2005), T. XX-XXI (2007)	199
9.1.	Weryfikacja prognoz zmian temperatury powietrza w: Anglii środkowej (1659-1993),	
	Greenwich (1659-1969), Paryżu (1767-1995), Berlinie (1769-1990) i Warszawie	201
0.2	(1779-1998, 1779-2002) Wenyfikacia, prognoz zmian temperatury nowietrzą w: Moskwie (1780-2002), Sztok-	201
5.2.	holmie (1756-1994) i Zurvchu (1864-1970)	241
9.3	Weryfikacja prognoz zmian temperatury powietrza w: Rzymie (1811-1989), Wiedniu	
	(1775-2002) i Kijowie (1812- 2002)	266
Х.	WERYFIKACJA PROGNOZ OPADÓW ATMOSFERYCZNYCH W WARSZAWIE	
	W 30-LECIU 1981-2010 (1993) I 20- LECIU 1991-2010 (2000)	291
10.1.	Weryfikacja prognoz przebiegu rocznego opadów atmosferycznych w Warszawie	
	w latach 1980-2100 według pomiarów z lat 1813-1979	291
10.2.	Weryfikacja prognoz opadów atmosferycznych w Warszawie na lata 1990-2100 –	207
VI	W 20-IECIU 1990-2010 (2 2000) NOWE DROCNOZY ZMIAN TEMPERATURY ROWIETRZA W WARSZAWIE	297
л і.	W XXI WIEKU WEDŁUG POMIARÓW Z LAT 1779-2015	321
11.1.	Nowe prognozy zmian temperatury powietrza w Warszawie w kolejnych miesiącach	021
	w latach 2016-2100	322
11.2.	Nowe prognozy zmian temperatury powietrza w Warszawie w porach roku i roku	
	w latach 2016-2100	358
XII.	ZAKONCZENIE	371
XIII.	LITERATURA	385
	ZJAWISKA POGODOWE W X-XVI WIEKU WEDŁUG KRONIK HISTORYCZNYCH	387
	WYKAZ PRAC MAGISTERSKICH ZAKŁADU KLIMATOLOGII DOTYCZĄCYCH	
	CYKLICZNOSCI I TENDENCJI ZMIAN KLIMATU W EUROPIE (1984-2015)	393
	ZAŁĄCZNIK (SPIS PUBLIKACJI)	395

450

Г

7.3. Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według danych dendrologicznych

Tendencje zmian cech termicznych klimatu Europy w ostatnim tysiącleciu według pomiarów temperatury powietrza i rocznych przyrostów drzew (ze szczególnym uwzględnieniem stuleci XVIII-XXI z wyeksponowaniem ich naturalnych przyczyn) określono w tomie XX-XXI *Atlasu*:

 Stopa-Boryczka M., Boryczka J., Bijak S., Cebulski R., Błażek E., Skrzypczuk J., 2007, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XX-XXI. Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według danych dendrologicznych (red. M. Stopa-Boryczka, redakcja W. Żakowski), Wyd. UW, s. 226

Najpierw (rozdz. II) przedstawiono cechy termiczne klimatu Europy, wynikające z jej położenia w umiarkowanych szerokościach geograficznych. Badania przeprowadzono na podstawie średnich miesięcznych wartości temperatury powietrza w 30-leciach 1931-1960 i 1961-1990. Pole temperatury powietrza opisano empirycznymi modelami – wielomianami regresji pierwszego, drugiego, trzeciego i czwartego stopnia $T = f(\varphi, \lambda, H)$ względem trzech współrzędnych: szerokości φ i długości geograficznej λ oraz wysokości nad poziomem morza H. Symulują one zarówno zmienność strefową temperatury powietrza (uwarunkowaną dopływem promieniowania słonecznego), jak też oddziaływanie Oceanu Atlantyckiego i wpływ wysokości nad poziomem morza.

Oryginalną część pracy stanowi rozdział III pt. *Ochłodzenia i ocieplenia klimatu Europy w XIX-XXI wieku*. Zawiera on wykresy widm i przebiegów wieloletnich temperatury powietrza wraz z prostymi regresji na przykładzie średnich rocznych w 40 miejscowościach europejskich. Widma (i okresy) temperatury powietrza wyznaczono metodą J. Boryczki "sinusoid regresji" (1998), a tendencje zmian określono równaniami prostych regresji. Szczególne znaczenie mają jednak prognozy temperatury powietrza do 2100 roku na podstawie interferencji silniejszych cykli zawartych w widmach. Prognozy wskazują na naturalne ochłodzenie klimatu Europy w XXI wieku. Według tych prognoz w XXI wieku można oczekiwać ochłodzenia, które częściowo może być złagodzone przez czynniki antropogeniczne (efekt cieplarniany i miejskie wyspy ciepła). W prognozach przyjęto założenia, że ekstrema wykrytych cykli (obecnych w widmach temperatury powietrza) o dość dużych amplitudach (istotnych statystycznie) będą się powtarzać nadal, tak jak w XVIII-XX wieku.

W tabelach zestawiono po 10 najchłodniejszych lat i po 10 najcieplejszych lat w XVIII-XX wieku. W kolejnych tabelach zestawiono krótkie, średnie i długie cykle temperatury powietrza w 40 miejscowościach europejskich reprezentujących prawie wszystkie jednostki fizycznogeograficzne.

Ochłodzenia i ocieplenia klimatu są kształtowane wahaniem dopływu energii słonecznej do powierzchni Ziemi, zależnej od aktywności Słońca (stałej słonecznej) i zawartości pyłów wulkanicznych w atmosferze – pochłaniających i rozpraszających promieniowanie słoneczne.

Temperatura powietrza w Europie w XVIII-XX wieku. cechuje się cyklicznością około 8., 11., 100. i 180-letnią. W zimie dominują około 8-letnie okresy temperatury powietrza o dużym zakresie wahań: w Warszawie – 8,3 (1,6°C), Krakowie – 8,3 (1,9), Sztokholmie – 7,8 (1,3), Moskwie – 7,9 (0,8). W widmach temperatury powietrza są obecne także cykle około 11-letnie np. w zimie: Warszawa – 11,6 (0,5°C), Kraków – 11,3 (0,8), Moskwa – 11,4 (1,6)

Nowość stanowią cykle klimatu określone na podstawie danych dendrologicznych z Europy (i Polski) w ostatnim 1000-leciu oraz prognozy po rok 2100 (rozdz. IV i V).

Zbliżone okresy są obecne w dendrologicznych ciągach szerokości pierścieni (słojów) dębów rosnących w Polsce (tab. 1).

Tabela.1. Okresy (Θ lat.) około 8. i 11- letnie szerokości pierścieni dębów rosnących w Polsce (XVIII-XX w.) R – współczynnik korelacji

Table 1. 8-year and 11-year cycles (Θ years) of ring widths of oaks growing in Poland (18th-20th c.) R – correlation coefficient

Miejsce		Θ	R	Θ	R	Miejsce		Θ΄	R	Θ	R
Gdańsk	1762-1985	8,0	0,127	11,6	0,219	Roztocze	1872-1988	7,6	0,147	11,2	0,194
Gołdap	1871-198	7,8	0,154	10,8	0,130	Suwałki	1861-1986	7,5	0,278	11,8	0,172
Hajnówka	1720-1984	7,9	0,144	11,2	0,258	Toruń	1713-1986	7,7	0,161	11,4	0,181
Koszalin	1782-1986	8,6	0,193	11,1	0,127	Warszawa	1690-1984	7,7	0,175	11,1	0,124
Kraków	1792-1985	7,7	0,235	11,5	0,137	Wrocław	1727-1986	8,3	0,206	11,6	0,162

Dużą rolę w kształtowaniu klimatu odgrywają długie cykle około 100. i 180-letni aktywności Słońca. Warunkują one okresy około 100. i 180-letni temperatury powietrza w Europie. Okresy prawie dwuwiekowe są zbliżone do okresu planetarnego 178,9 lat, po upływie którego powtarzają się wartości parametrów Układu Słonecznego (tab. 2).

 Tabela 2. Okresy około 100. i 180-letnie temperatury powietrza w Europie

 Table 2. Approximately 100-year and 180-year cycles of air temperature in Europe

`Miejscowość		Zin	Zima		Lato		Zima		Lato	
		Θ	ΔT							
Warszawa	1779-1998	113,4	1,22	75,0	0,88	179,0	0,44	208,2	0,66	
Bazylea	1755-1980	85,5	0,14	87,6	0,64	-	-	227,4	0,26	
Kopenhaga	1768-1991	80,5	0,22	89,6	0,27	-	-	211,6	1,19	
Anglia	1660-1973	99,3	0,44	102,5	0,20	166,9	0,48	204,6	0,34	
Sztokholm	1756-1994	86,3	0,55	89,4	0,51	184,6	0,49	-	-	
Uppsala	1739-1970	102,7	1,48	94,0	0,79	182,3	2,50	192,8	0,39	
Innsbruck	1777-2000	69,9	0,80	84,6	0,50	169,8	1,45	-	-	

Zbliżonymi okresami około 100. i 180-letnimi cechują się ciągi chronologiczne szerokości pierścieni drzew: sosny, świerka i modrzewia w Europie (tab.3).

Tabela 3. Okresy (Θ lat) około 100. i 180- letnie szerokości pierścieni drzew (sosna, świerk, modrzew) rosnących w Europie

Table 3. Approximately 100-year and 180-year cycles (Θ years) of ring widths of trees growing in Europe (pine, spruce and larch)

Drzewo	Przedział czasu	Θ	R	Θ	R	Θ	R
Sosna							
Forfiorddalen (Norwegia)	877-1994	112	0,178	189	0,121	_	-
Kola (Rosja)	1577-1997	109	0,394	186	0,277	-	-
Świerk							
Stonngrandes (Norwegia)	1403-1997	114	0,191	201	0,243	-	-
Falkenstein (Niemcy)	1540-1995	110	0,298	189	0,414	429	0,399
Fodara Vedla (Włochy)	1578-1990	99	0,083	191	0,718	-	-
Modrzew							
Pinega 1 (Rosja)	1598-1990	103	0,184	217	0,286	_	-

Prognozy otrzymano na podstawie interferencji wykrytych cykli metodą "sinusoid regresji" J. Boryczki (1998):

$$y = f(t) = a_o + \sum_{j=1}^{\kappa} b_j \sin\left(\frac{2\pi}{\Theta_j}t + c_j\right)$$
(7)

gdzie: Θ – okres , *b* – amplituda, *c* – przesunięcie fazowe. Wykresy funkcji prognostycznych *y* = *f*(*t*) rocznych przyrostów niektórych drzew cechują się głównymi minimami w połowie XXI wieku. W przypadku np. świerka z Falkenstein (1540-1995) prognozy uwzględniają silne cykle: 110, 189 i 429 lat (o współczynnikach korelacji *R* = 0,30, 0,42 i 0,40).

Na klimat Europy dominujący wpływ mają dwa główne centra pola ciśnienia atmosferycznego: Niż Islandzki i Wyż Azorski. Te dwa centra ciśnienia związane z różnicą temperatury między wodą Atlantyku Północnego i lądem są w ciągu roku ze sobą ujemnie skorelowane. O wpływie aktywności Słońca na cyrkulację atmosfery (na dystrybucję ciepła na Ziemi) świadczą analogiczne cykle cyrkulacji atmosfery i liczb Wolfa, a także temperatury powietrza.

Wskaźnik *NAO* w latach 1825-2000 cechuje się okresowością 8-letnią, kilkunastoletnią i 106,3-letnią, a temperatura powietrza w Europie cechuje się okresowością 8-, 11-, 100- i 180-letnią.

Istotny jest również ostatni rozdział VI – autoreferat pracy doktorskiej R. Cebulskiego pt. *Rola cyrkulacji atmosferycznej w kształtowaniu opadów atmosferycznych i stanów wody rzeki górskiej*. Dużą wartość poznawczą mają zbliżone widma i okresy, wyznaczone metodą "sinusoid regresji", badanych zmiennych tj. stanów wody w rzece górskiej, opadów atmosferycznych, wskaźników cyrkulacji atmosferycznej i aktywności Słońca.

MARIA STOPA-BORYCZKA JERZY BORYCZKA SZYMON BIJAK ROBERT CEBULSKI ELŻBIETA BŁAŻEK JAN SKRZYPCZUK

XX-XXI CYKLICZNE ZMIANY KLIMATU EUROPY W OSTATNIM TYSIĄCLECIU WEDŁUG DANYCH DENDROLOGICZNYCH

atlas

WSPÓŁZALEŻNOŚCI PARAMETRÓW METEOROLOGICZNYCH I GEOGRAFICZNYCH W POLSCE

Warszawa 2007

SPIS TREŚCI (20-21)

	DZIAŁALNOŚĆ NAUKOWA I DYDAKTYCZNA PROF. DR HAB. JERZEGO BORYCZKI	7
	ACADEMIC AND RESEARCH ACTIVITY OF PROFESSOR JERZY BORYCZKA	25
I.	WPROWADZENIE	33
II.	CECHY TERMICZNE KLIMATU EUROPY	37
1.	Zmiany roczne gradientów temperatury powietrza	37
2.	Profile gradientów rocznej amplitudy temperatury powietrza	41
3.	Przestrzenny rozkład gradientów temperatury powietrza	43
4.	Gradienty horyzontalne temperatury powietrza w °C/100 km	45
5.	Deformacja pola temperatury powietrza przez czynniki lokalne	48
III.	OCHŁODZENIA I OCIEPLENIA KLIMATU EUROPY W XIX-XXI WIEKU	67
1.	Wpływ aktywności Słońca na temperaturę powietrza w Europie	67
2.	Wpływ Oscylacji Północnoatlantyckiej (NAO) na temperaturę powietrza w Europie	69
3.	Mroźne i łagodne zimy oraz ciepłe i chłodne lata w Europie	71
4.	Okresowe zmiany temperatury powietrza w Europie	72
5.	Tendencje zmian temperatury powietrza w Europie w XIX-XX wieku. Prognozy do roku	
	2100 CYKLICZNE ZMIANY KLIMATU EUROPY W OSTATNIM TYSIACI ECILI WEDŁUG	74
IV.	CIAGÓW DENDROLOGICZNYCH	127
1.	Zarys badań dendroklimatycznych	127
2.	Synchroniczność cykli klimatycznych i dendrologicznych w Europie	129
2.1.	Cykl 4-letni temperatury powietrza, opadów i cyrkulacji atmosferycznej	130
2.2.	Cykl 8-letni temperatury, cyrkulacji atmosferycznej, aktywności Słońca i rocznych przy-	
	rostów drzew	131
2.3.	drzew	133
2.4.	Cykle 100. i 180-letni temperatury powietrza, aktywności Słońca i rocznych przyrostów	
	drzew	135
3.	Wpływ Oscylacji Północnoatlantyckiej (NAO) na klimat Europy	137
4.	Prognozy zmian klimatu Europy w XXI wieku	138
V.	ZMIANY KLIMATU POLSKI W OSTATNICH STULECIACH WEDŁUG ROCZNYCH	
	PRZYROSTOW DĘBOW	177
1.	ści rocznych przyrostów debów w Polsce	177
2.	Zależność szerokości słoi dębów od miesięcznych wartości temperatury i sum opadów	
	atmosferycznych w Polsce	183
3.	Lata wskaznikowe dębow w Polsce	197
4.	Widma i parametry cykli rocznych przyrostów dębów w Polsce	200
5.	Prognozy zmian rocznych przyrostow dędow w Polsce w XXI wieku	211
VI.	ROLA CYRKULACJI ATMOSFERYCZNEJ W KSZTAŁTOWANIU OPADOW ATMOS- FERYCZNYCH I STANÓW WODY RZEKI GÓRSKIEJ	219
1	Cel, tezy i zakres pracy	219
2	Cechy fizyczno-geograficzne badanej zlewni karpackiej	220
2.1	Położenie geograficzne zlewni, układ dorzecza	220
2.2	Warunki klimatyczne zlewni	221
2.3	Dane empiryczne	222
3	Empiryczne i teoretyczne rozkłady prawdopodobieństwa opadów atmosferycznych	
2.	i stanów wody w rzece karpackiej	223
3.1.	Wybór teoretycznych rozkładów prawdopodobieństwa	223
3.2.	Porównanie dystrybuant empirycznych i teoretycznych	223
3.3.	Wyznaczenie sum opadów o prawdopodobieństwie przewyższenia	224
156		

4.	Ekstrema i tendencje zmian opadów atmosferycznych i stanów wody w przekrojach wodowskazowych oraz ich uwarunkowania	225
4.1. 5.0.	Przyczyny tendencji malejącej zmian stanów wody w rzece Skawie Okresowe zmiany opadów atmosferycznych i stanów wody w rzece górskiej oraz ich	225
	przyczyny	228
5.1. 5.2.	Metoda badania okresowości ciągów chronologicznych Wyniki analizy okresowej zmienności elementów klimatologicznych i hydrologicznych	228 230
5.3. 6.	Synchroniczność cykli badanych zmiennych Zależność opadów atmosferycznych oraz średnich i ekstremalnych stanów wody w rzece górskiej od cyrkulacji atmosferycznej	233 234
6.1.	Wybór metod analizy regresii	234
6.2.	Próba uwzględnienia zmian koryta rzeki w ciągach chronologicznych stanów wody	234
6.3.	Wpływ cyrkulacji atmosferycznej na pole opadów w zlewni Skawy	235
6.4.	Wpływ cyrkulacji atmosferycznej na stany wody w przekrojach wodowskazowych Skawy	236
6.5.	Zależność stanów wody Skawy od opadów atmosferycznych	236
6.6.	Zależność częstości ekstremalnych stanów wody w przekrojach wodowskazowych zlewni karpackiej od cyrkulacji atmosferycznej	240
7.0.	Prognoza zmian opadów atmosferycznych oraz średnich i ekstremalnych stanów wody w rzece karpackiej do roku 2025	242
7.1.	Przyjęte metody prognozowania oraz jego statystycznej oceny	242
7.2.	Prognoza sum rocznych opadów atmosferycznych do roku 2025	243
7.3.	Prognoza rocznych wartości stanów wody do roku 2025	243
8.	Podsumowanie	247
VII.	ZAKOŃCZENIE	251
	SUMMARY	255
	LITERATURA	259
	WYKAZ PRAC MAGISTERSKICH ZAKŁADU KLIMATOLOGII DOTYCZĄCYCH CYKLICZNOŚCI I TENDENCJI ZMIAN KLIAMTU W EUROPIE	265

CONTENTS

Maria STOPA-BORYCZKA , Studies on the climate of Warsaw in the second half of the 20th	_
Urszula KOSSOWSKA-CEZAK, Jolanta WAWER, The contribution of the Department of	7
Climatology to the study of the climate of Warsaw	13
Jerzy BORYCZKA – Changes in the climate of Warsaw from 18th to 21th century	25
Maria STOPA-BORYCZKA, Jerzy BORYCZKA , The cyclic changes of the climate of Warsaw and their conditioning	35
Urszula KOSSOWSKA-CEZAK , The abrupt temperature increases and decreases in Warsaw in the second half of the 20th century	51
Elwira ŻMUDZKA , The variability of the growing season in Warsaw in the second half of the 20th century	61
Katarzyna GRABOWSKA, Storms in Warsaw against the background of other Polish towns	73
Jolanta WAWER, Dependence of the urban heat island on the atmospheric circulation	75
types	91
Maria STOPA-BORYCZKA, Jerzy BORYCZKA, The influence of the manmade factors on the local climate of Warsaw	95
Maria KOPACZ-LEMBOWICZ, Urszula KOSSOWSKA-CEZAK Danuta MARTYN, Krzysztof OLSZEWSKI, The influence of urban greenery on local climate	111
Bożena KICIŃSKA – The aerosanitary conditions in the towns of Poland	131
Krzysztof OLSZEWSKI – The acidity of precipitation in Warsaw	147
Magdalena KUCHCIK – The influence of aerosanitary and bio-meteorological conditions on the health and mortality of the inhabitants of Warsaw	155
Maria STOPA-BORYCZKA, Maria KOPACZ-LEMBOWICZ, Jolanta WAWER – The findings of the research on the climate of Warsaw conducted at the Department of Climatology of	
Warsaw University	167
Maria KOPACZ-LEMBOWICZ – The application-oriented character of the reports elabo- rated at the Department of Climatology concerning urban climate .	177
The list of publications of the Department of Climatology concerning the climate of War- saw	197
The list of Ph.D. dissertations and M.A. theses concerning the climate of Warsaw	199

Directions of research of the Department of Climatology of the Warsaw University 1951-2009

Summary

The fundamental research conducted within the Department of Climatology of the Faculty of Geography and Regional Studies (previously Institute of Geography) at the Warsaw University concerns primarily the climate of Poland. This theme is contained in the research plans of the department since 1952. The theme would only undergo modifications as to its more precise formulation, referring frequently to the fresh currents in climatology.

The research in the domain of climate of Poland was initiated by Professor Romuald Gumiński, the first head of the Department of Climatology of the Institute of Geography at the Warsaw University (1951-1952).

The main research directions taken up at the Department of Climatology under the leadership of Professor Wincenty Okołowicz (the head of the Department in the years 1953-1973), with considerable assistance from Ass. Professor Zofia Kaczorowska (who worked at the Department between 1951 and 1972), include:

The structure and regionalisation of the climate of Poland,

The climate of the north-eastern Poland,

The climate and bio-climate of towns.

The primary object of research at the Department is nowadays constituted by the problem of natural and anthropogenic changes in the climate of Europe, with special consideration of Poland. Within this domain attention should be paid to such subjects

Empirical models of spatial and temporal variability of climate,

Periodical changes of climate and their causes,

Secular trends in climate changes,

Anthropogenic climate changes,

Forecasts of changes in the climate of Poland in the 21st century.

All of these research problems are being approached through both individual and team projects. The most important results of the teamwork include, first of all, the 14 volumes of the *Atlas of interdependencies of the meteorological and geographic parameters in Poland* (in Polish), published in the years 1974-2000. A *sui generis* synthesis of the individual work on the climate of Poland is constituted by the two issues of "Prace i Sudia Geograficzne", published (in Polish) under the titles of *New methods of inquiry into the climate of Poland* (1997) and *From the study of the climate of Poland* (1998). The first of these issues was published on the occasion of the 45th anniversary of the establishment of the Department, while the second – to commemorate the 100th anniversary of birth of Professor Romuald Gumiński.

Among significant advances in the comparative study of natural and anthropogenic changes in Poland's climate in the first decade of the 21st century and the second half of the 20th century, are the postdoctoral dissertation of E. Żmudzka (2007), *Zmienność zachmurzenia w Polsce i jej uwarunkowania cyrkulacyjne (1951-2000)* [Cloud cover variability and circulation factors in Poland (1951-2000)] and the doctoral dissertation of K. Grabowska (2002), *Burze w Polsce i ich uwarunkowania (1951-1990)* [Thunderstorms and their preconditions in Poland (1951-1990)].

Substantial contributions to knowledge have also been made by studies whose results are presented in the following 6 volumes of *Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce* [Meteorological and Geographical Parameter Interdependence in Poland: an Atlas], published in 2002-2008. Volumes 20-21 and 22 are of particular importance.

7.4. Postęp badań naturalnych zmian klimatu Europy w pierwszej dekadzie XXI wieku w odniesieniu do drugiej połowy XX wieku

Do nowych problemów rozwiązywanych w Zakładzie Klimatologii Uniwersytetu warszawskiego można zaliczyć następujące tematy:

- Wykrycie cykliczności zmiennych dendrologicznych rocznych przyrostów (słojów) drzew rosnących w Europie – około 100-, 180- i kilkusetletnich, umożliwiającej rekonstrukcję i prognozy zmian klimatu w ostatnim tysiącleciu (tom XX-XXI).
- Badanie cykliczności, tendencji i prognoz zmian klimatu Europy w ostatnich stuleciach (XVII-XXI wieku) według pomiarów temperatury powietrza w 40 miejscowościach, reprezentujących całą Europę.
- Zmiany temperatury powietrza w porach roku: zima, lato (tom XVII), najchłodniejsze i najcieplejsze miesiące I i VII (tom XIX) oraz rok I-XII (tom XX-XXI).

W badaniach czasowych zmian klimatu Europy znaczący jest udział studentów specjalizacji klimatologicznej w ramach prac magisterskich (tom. XXV), na przykładach kilkunastu miast: nizinnych (Londyn, Warszawa, Moskwa), miast górskich (Genewa, Zurych, Saentis, Sonnblick). Ponadto zbadano wpływ Oscylacji Północnoatlantyckiej na temperaturę powietrza w Europie (Paryż, Marsylia, Wrocław, Kraków, Warszawa).

Określono też zmiany temperatury powietrza w profilach południkowym (Sztokholm, Warszawa, Ateny) i równoleżnikowym (Paryż, Warszawa, Moskwa)

W prognozach ogromne znaczenie ma wykazanie, zbliżonych okresów krótkich i długich temperatury powietrza i rocznych przyrostów drzew, zwłaszcza okresów 8-, 11oraz 100- i 180-letnich. Należy zauważyć, że najpierw stwierdzono cykl 11-letni szerokości pierścieni (słojów) drzew, a później znaleziono jego przyczynę, tj. cykliczność 11-letnią plam słonecznych (aktywności Słońca).

Mroźne zimy i upalne lata w Polsce

Przeszłość i teraźniejszość klimatu Ziemi scharakteryzowano w tomie XVII Atlasu:

Boryczka J., Stopa-Boryczka M., Baranowski D., Kirchenstein M., Błażek E., Skrzypczuk J., 2003, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XVII.. Mroźne zimy i upalne lata w Polsce, red. M. Stopa-Boryczka, J. Boryczka, (red. W. Żakowski), Wyd. UW, ss. 297

Zarys klimatu minionych epok geologicznych

Historię klimatu Ziemi można podzielić na części, wynikające ze skali czasu i stosowanych metod badań. Są to przedziały czasu: 1. - od 3,5 miliarda lat, 2. - od 2 milionów lat (czwartorzęd), $3. - \text{od } 10\ 000$ lat (Holocen), $4. - \text{od kilkuset lat (dane historycz$ ne, dendrometryczne i instrumentalne).

O najstarszej historii Ziemi informują formy rzeźby powierzchni polodowcowych, dawne linie brzegowe mórz i oceanów, jezior, rafy koralowe i znalezione relikty pierwszych form życia na Ziemi.

"Księgami", gdzie zapisana jest historia klimatu Ziemi, są: osady głębokomorskie, osady jeziorne, a przede wszystkim lody Antarktydy, Arktyki i lodowce wysokogórskie.

Ochłodzenia i ocieplenia klimatu określane są na podstawie tzw. paleotemperatury – tj. zawartości izotopów: tlenu ¹⁸O i wodoru ²H (deuteru) w substancjach organicznych, zdeponowanych w osadach i rdzeniach lodowych.

Parowanie "ciężkiej wody" H_2O (²H, ¹⁸O) w oceanach w określonej temperaturze jest mniejsze niż zwykłej wody H_2O (¹H, ¹⁶O). Duża zawartość izotopów tlenu ¹⁸O i

wodoru ²H w szkieletach dawno żyjących w oceanach organizmów świadczy o chłodnym klimacie (o chłodnej wodzie oceanu), a mała – o ciepłym (ciepłej wodzie). Natomiast w rdzeniach lodu, powstałego z kondensacji pary wodnej, pochodzącej znad oceanów jest przeciwnie. Duża zawartość tych izotopów w lodzie wskazuje na klimat ciepły, a mała – na klimat chłodny.

W rekonstrukcji dawnego klimatu fundamentalne znaczenie ma ustalenie wieku skał, osadów i rdzeni lodowych. W "datowaniach" wykorzystuje się czas połowicznego rozpadu pierwiastków promieniotwórczych. Są to izotop węgla ¹⁴C (5730 lat) i izotopy pochodzące z rozpadu uranu: protaktyn ²³¹Pa, tor ²³⁰Th, izotop uranu ²³⁴U i inne – o okresie połowicznego rozpadu kilkaset tysięcy lat.

Około 2,3 miliarda lat temu aktywność wulkaniczna była mała, a temperatura Ziemi znacznie się obniżyła. Nastąpiła pierwsza (archaiczna) epoka lodowa na Ziemi. Świadczą o tym charakterystyczne moreny polodowcowe. Ich wiek określa się na 2,2-2,4 miliarda lat temu. Ślady tego archaicznego zlodowacenia spotkać można w Kanadzie, na Alasce, w Indiach i Australii. Zlodowacenie archaiczne doprowadziło do powstania pokryw lodowych w obszarach podbiegunowych obu półkul.

W ciągu ostatniego miliarda lat wystąpiło 6 wielkich epok lodowych: 950, 750, 620, 440, 280, 3-2 (zlodowacenie czwartorzędowe) – średnio co 190 milionów lat. Są to tzw. "zimy kosmiczne", których przyczyną może być obieg Układu Słonecznego dookoła środka naszej galaktyki (Drogi Mlecznej). Rok galaktyczny jest równy około 226 milionów lat

Obecnie żyjemy w epoce lodowej (czwartorzędu), która rozpoczęła się 2 miliony lat temu i trwa nadal, z pokrywą lodową znajdującą się na obu biegunach (na Antarktydzie i w Arktyce)

Zlodowacenia Ziemi, które wystąpiły w ciągu ostatniego miliona lat, wynikają ze zmian kształtu orbity Ziemi (Milanković, 1930). Według tej teorii zmiany okresowe parametrów eliptycznej orbity Ziemi spowodowały znaczące spadki promieniowania słonecznego w dużych szerokościach geograficznych, zwłaszcza w obszarach okołobie-gunowych. Daty kolejnych głównych minimów promieniowania słonecznego w szerokości geograficznej 65° pokrywają się z datami kolejnych zlodowaceń Ziemi, określo-nymi przez geologów.

Cztery ostatnie zlodowacenia Ziemi (obejmujące obszar Polski) były efektem nakładania się trzech długich cykli: 92 000 lat – mimośrodu (ekscentryczności) orbity, 40 000 lat – nachylenia płaszczyzny ekliptyki do równika 21 000 lat – położenia peryhelium względem punktu równonocy wiosennej.

Analogiczne cykle stwierdzono w badaniach osadów głębokomorskich (Hays i inni, 1976). Okazało się, że izotop tlenu ¹⁸O zawarty w węglanach wapnia cechuje się zbliżoną okresowością: 100 000 lat, 42 000 lat, 23 000 lat.

W ciągu ostatniego miliona lat wystąpiło 10 głównych ochłodzeń i 10 ociepleń klimatu. Średni odstęp między ochłodzeniami (zlodowaceniami Ziemi) wynosi około 100 000 lat. Jedno z ostatnich minimów lokalnych sum rocznych promieniowania słonecznego (1196 MJ.m⁻² wystąpiło około 22 000 lat temu przy nachyleniu ekliptyki $\varepsilon = 22^{\circ},56$ i mimośrodzie e = 0,061 (ostatnia faza zlodowacenia Würm).

Zlodowacenia Ziemi występowały przy największym spłaszczeniu orbity Ziemi (e = 0.066), gdy w lecie odległość Ziemi od Słońca była największa, a nachylenie ekliptyki małe.

Prawdopodobnie kolejne zlodowacenie Ziemi nastąpi za około 62 000 lat $(I_{\min} = 1189 \text{ MJ} \cdot \text{m}^{-2})$ przy ekscentryczności orbity Ziemi e = 0,066.

Chronologiczne ciągi czasowe substancji organicznych zdeponowanych w osadach polskich jezior: Wikaryjskie, Święte, Gościąż informują o holoceńskich wahaniach klimatu Polski. W datowaniach osadów zastosowano metodę radioaktywnego izotopu ¹⁴C węgla lub (w przypadku Jez. Gościąż) zliczano 10-letnie przyrosty warstwy osadów. Akumulowane substancje organiczne w osadach tych jezior są dodatnio skorelowane z temperaturą atmosfery. Daty ochłodzeń i ociepleń klimatu Polski – to minima i maksima koncentracji substancji organicznych.

Według zawartości substancji organicznych w osadach wymienionych jezior za datę holoceńskiego ochłodzenia klimatu Polski można przyjąć 12000 BP (Wikaryjskie), 11450-9000 BP (Święte), 11000-9000 (Gościąż).

Największe holoceńskie ocieplenia klimatu Polski – według osadów jez. Gościąż, są datowane 13 000-11 000 BP i 9 000-8500 BP.

W przedziale czasu od 20 000 do 12 540 lat temu rekonstruowano zawartość substancji organicznych w osadach na podstawie interferencji cykli: 50, 230, 360, 390, 540, 590, 1120, 1380, 1770, 2970, 6080, 12 380 lat.

Ochłodzenia i ocieplenia klimatu w ostatnich stuleciach

Rekonstrukcje temperatury powietrza w warstwie przyziemnej w różnych miejscach Ziemi w ostatnim tysiącleciu (wg redukcji lodowców, szerokości pierścieni drzew i pomiarów bezpośrednich) wskazują trzy zasadnicze przedziały czasu: "optimum średniowieczne" – 800-1200, "mała epoka lodowa" – 1400-1900 i współczesne ocieplenie – od 1900 roku. Należy zauważyć, że serie dendrometryczne (grubości słojów drzew) uwzględniają głównie temperaturę i opady okresu wegetacyjnego.

W ostatnich 400 latach wystąpiły trzy główne ochłodzenia klimatu Ziemi, o najmniejszej średniej globalnej temperaturze powietrza na półkuli północnej w pobliżu dat: 1600, 1700, 1830. Najbardziej poznane (na podstawie danych instrumentalnych) jest to ostatnie, największe ochłodzenie w Europie i Polsce (wg serii warszawskiej i krakowskiej). Trzeba zauważyć, że wystąpiło ono podczas trzech najsłabszych, wydłużonych (12-13- letnich) cykli aktywności Słońca (1798-1833). Ochłodzenie to pojawiło się w czasie najsłabszego 13-letniego cyklu plam słonecznych (1811-1823), podczas absolutnego minimum wiekowego (od 1700 r.).

Rok 1811 był szczególny pod względem stanu Układu Słonecznego, kiedy to odległość Słońca od środka masy Układu była najmniejsza (0,14 część promienia Słońca), a przyspieszenie Słońca – największe. To ostatnie globalne ochłodzenie klimatu (także w Polsce) wystąpiło podczas wzmożonej aktywności wulkanicznej, po największych wybuchach wulkanów: 1803 – Cotopaxi, 1815 – Tambora , 1835 – Coseguina.

Ochłodzenia i ocieplenia klimatu są kształtowane wahaniem dopływu energii słonecznej do powierzchni Ziemi, zależnej od stałej słonecznej i zawartości pyłów wulkanicznych w atmosferze – pochłaniających i rozpraszających promieniowanie słoneczne.

Na Słońcu obserwuje się wiele zjawisk o natężeniu okresowym, m.in. plamy słoneczne od których zależy dopływ energii słonecznej do Ziemi.

Ciągi chronologiczne liczb Wolfa (liczb plam słonecznych) i temperatury powietrza wskazują, że podczas maksimów aktywności Słońca w cyklu 11-letnim jest cieplej niż w czasie minimów (większe są również przyrosty drewna w lasach – grubsze słoje drzew). Jest to wynikiem zależności dystrybucji ciepła na powierzchni Ziemi od aktywności Słońca.

Cyrkulacja atmosferyczna warunkuje transport magazynowanej głównie w strefie międzyzwrotnikowej energii słonecznej w stronę biegunów.

Temperatura powietrza w Europie (i Polsce) cechuje się cyklicznością około 8-, 11-, 100- i 180-letnią. Cykle wyznaczono metodą "sinusoid regresji" :

$$T = a_0 + b\sin\left(\frac{2\pi}{\Theta}t + c\right) \tag{8}$$

gdzie: Θ – okres , *b* – amplituda, *c* – przesunięcie fazowe).

W Europie (i w Polsce) dominują około 8-letnie okresy temperatury powietrza o dużych amplitudach $\Delta T = 2b = T_{max} - T_{min}$ (tab. 4)

 Tabela 4. Okresy około 8-letnie temperatury powietrza w Europie

 Table
 4. The close-to-8-year long periods of air temperature in Europe

Miejscowość		Zi	ima	L	ato	Miejscowość		Zi	ima	L	ato
5		Θ	ΔT	Θ	ΔT	,		Θ	ΔT	Θ	ΔT
Warszawa	1779-2002	8,3	1,59	7,1	0,66	Genewa	1768-1980	7,7	0,62	7,8	0,40
Kraków	1826-2000	8,3	1,87	7,8	0,33	Wiedeń	1775-2002	8,3	0,87	8,4	0,38
Wrocław	1782-2002	8,3	1,53	7,8	0,27	Rzym	1811-1989	7,9	0,30	8,4	0,32
Lwów	1824-2002	8,3	1,30	7,9	0,56	Sztokholm	1758-1994	7,8	1,33	7,8	0,40
Praga	1772-2002	8,3	1,06	7,8	0,44	Kopenhaga	1768-1990	7,8	1,24	8,3	0,51
Berlin	1769-1990	7,7	1,54	7,8	0,55	Moskwa	1780-2002	7,9	0,76	8,3	0,60

Zakres wahań temperatury powietrza np. w Warszawie w zimie w cyklu 8,3-letnim wynosi $\Delta T = 1.5^{\circ}$ C, a średniej rocznej (okres 7,7 lat) – 0,6°C.

Od dawna znana jest cykliczność około 11-letnia temperatury powietrza, związana z cyklem 11-letnim plam słonecznych. Okresy około 11-letnie temperatury powietrza i amplitudy ΔT (°C) w wybranych miejscowościach w zimie, lecie i roku zestawiono w tabeli 5.

Tabela 5. Okresy około 11-letnie temperatury powietrza w Europie**Table 5.** The close-to-11-year long periods of air temperature in Europe

Miejscowość		Zi	ma	La	ito	Mieiscowość		Zi	ma	La	ito
-j		Θ	ΔT	Θ	ΔT			Θ	ΔT	Θ	ΔT
Warszawa	1779-2002	11,6	0,53	11,3	0,22	Genewa	1768-1980	11,0	0,40	11,3	0,28
Kraków	1826-2000	11,3	0,84	11,4	0,26	Wiedeń	17752002	11,0	0,44	11,0	0,12
Wrocław	1782-2002	11,4	0,74	11,5	0,42	Rzym	18111989	11,8	0,44	10,7	0,39
Lwów	1824-2002	11,2	1,11	10,7	0,06	Sztokholm	1758-1994	11,3	0,29	11,6	0,38
Praga	1772-2002	11,0	0,42	11,1	0,19	Kopenhaga	1768-1990	11,1	0,26	11,5	0,48
Berlin	1769-1990	11,0	0,42	11,6	0,18	Moskwa	1780-2002	11,4	1,62	11,3	0,30

Zakres wahań temperatury powietrza w tym około 11-letnim cyklu jest na ogół ponad dwukrotnie większy w zimie niż w lecie.

Krótkookresowe zmiany aktywności Słońca (stałej słonecznej) nie odgrywają istotnej roli w kształtowaniu klimatu Ziemi, ze względu na bardzo powolne przenikanie ciepła do głębszych warstw Ziemi. Większą rolę odgrywają długie cykle: 102-letni i 187-letni aktywności Słońca (tab. 6). W otoczeniu maksimów plam słonecznych w tych cyklach kumulowane są duże ilości energii w głębszych warstwach lądów i oceanów. Energia magazynowana w oceanach wywiera wpływ na cyrkulację atmosferyczną.

 Tabela 6.
 Okresy około 100- i 180- letnie: aktywności Słońca, stałej słonecznej i erupcji wulkanicznych

 Table
 6.
 The close-to-100 and 200-year long periods of solar activity, solar constant and volcanic eruptions

Zmienna	Okres Θ	Okres Θ
Aktywność Słońca (1700-2000)	102,0	187,3
Stała słoneczna (1700-2000)	102,0	187,0
$DVI/\Delta t$	91,5	206,0

Analogiczne okresy są obecne w seriach pomiarowych temperatury powietrza (tab. 7 i 8, $\Delta T = 2b$ – amplituda).

 Tabela 7. Okresy około 100-letnie temperatury powietrza w Europie

 Table 7. The close-to-100-year long periods of air temperature in Europe

Misisser		Zima		La	to	Misisser		Zima		Lato	
Miejscowość		Θ	ΔT	Θ	ΔT	Miejscowosc		Θ	ΔT	Θ	ΔT
Warszawa	1779-2002	113,4	1,22	75,0	0,88	Bazylea	1755-1980	85,5	0,14	87,6	0,64
Kraków	1826-2000	90,0	0,48	88,0	0,67	Kopenhaga	1768-1990	80,5	0,22	89,6	0,27
Wrocław	1782-2002	123,3	1,66	75,0	0,50	Anglia	1660-1973	99,3	0,44	102,5	0,20
Lwów	1824-2002	108,8	1,30	74,1	1,33	Sztokholm	1758-1994	86,3	0,55	89,4	0,51
Praga	1772-2002	116,3	1,44	118,3	0,68	Uppsala	1739-1990	102,7	1,48	94,0	0,79
Wiedeń	1775-2002	89,8	0,79	96,1	0,58	Innsbruck	1777-1999	69,9	0,80	84,6	0,50

 Tabela 8.
 Okresy około 180-letnie temperatury powietrza w Europie

 Table
 8.
 The close-to-180-year long periods of air temperature in Europe

Miejscowość		Zima		Lato		Miejscowość		Zima		Lato	
mejseowose		Θ	ΔT	Θ	ΔT	1110350011050		Θ	ΔT	Θ	ΔT
Warszawa	1779-2002	218,3	0,44	208,2	0,66	Bazylea	1755-1980	-	-	227,4	0,26
Kraków	1826-200	168,3	0,43	-	-	Kopenhaga	1768-1990	-	-	211,6	1,19
Lwów	1824-2002	-	-	195,3	1,00	Anglia	1660-1973	166,9	0,48	204,6	0,34
Genewa	1768-1980	144,1	-	248,3	1,09	Sztokholm	1758-1994	184,6	0,49	-	-
Berlin	1769-1990	212,8	1,18	-	-	Uppsala	1739-1990	182,3	2,50	192,8	0,39
Rzym	1811-1989	-	-	224,9	1,40	Innsbruck	1777-1999	169,8	1,45	-	-

Dominujący wpływ na klimat ma pył wulkaniczny, absorbujący i rozpraszający promienie słoneczne. Promieniowanie słoneczne bezpośrednie po wybuchu wulkanu może zmniejszyć się przez kilka miesięcy o 10-20% (Katmai na Alasce w 1912 r.). Spadek promieniowania bezpośredniego po wybuchach wulkanów: Krakatau (Indonezja,1883), Hekla (Islandia, 1970) miał charakter zmian planetarnych (globalnych). Po wybuchu wulkanu Tambora (Indonezja, 1815) pył osiągnął wysokość 60-70 km.

Wulkany typu eksplozywnego wyrzucają do atmosfery duże ilości pyłów i gazów (HCL, SO₂, CO₂, H₂, S i inne). Drobny pył wyrzucany do stratosfery może pozostawać w niej nawet przez kilkanaście lat.

Szczególne znaczenie w badaniach zmian klimatu mają gazy wulkaniczne wyrzucane do stratosfery, które w ciągu kilku miesięcy ulegają przemianom chemicznym i są rozprzestrzenione wokół całej Ziemi. Największy wpływ na rozproszenie promieniowania krótkofalowego słonecznego mają cząsteczki siarczanów (aerozole siarczanowe), które powstają z gazów zawierających siarkę (np. SO₂). Cząstki siarczanów absorbują i rozpraszają promieniowanie słoneczne. Powodują one ogrzanie się stratosfery, gdy w dolnych warstwach troposfery występuje ochłodzenie, wywołane spadkiem promieniowania dochodzącego do powierzchni Ziemi.

Pył wulkaniczny powoduje znaczny spadek promieniowania bezpośredniego i zwiększa promieniowanie rozproszone dochodzące do Ziemi.

Gdy w atmosferze znajduje się warstwa pyłów wulkanicznych, to spadki promieniowania bezpośredniego są większe przy mniejszych wysokościach Słońca (wyższych szerokościach geograficznych). Ten spadek jest jeszcze większy w przypadku promieniowania całkowitego. Maleje ono bardziej ze wzrostem szerokości geograficznej niż promieniowanie bezpośrednie, Ten stosunek na biegunie osiąga wartość 24%.

Spadek promieniowania całkowitego o 1,5-1,6% może doprowadzić do całkowitego zlodowacenia Ziemi – od biegunów do równika.

Tendencje zmian klimatu w XVII-XX wieku

Niepokojące jest systematyczne ocieplanie się klimatu Ziemi w XIX-XX wieku. Średnia globalna temperatura powietrza w latach 1890-1985 wzrosła od 0,2°C w strefie okołorównikowej do 5°C w strefie polarnej, podczas zim. Wzrost średniej globalnej temperatury, obliczonej na podstawie pomiarów temperatury powietrza i powierzchni mórz w latach 1861-1991 wynosi średnio 0,5°C.

Tendencje temperatury powietrza w Europie określone według równań prostych regresji $T = A_o + At$ (współczynniki kierunkowe A w °C/100 lat) podano w tab. 9. Charakteryzują one średnie przyrosty temperatury powietrza na 100 lat w odpowiednich przedziałach czasowych. Na ogół tendencje temperatury powietrza w miastach europejskich w zimie są rosnące (A > 0), a w lecie malejące (A > 0).

Tabela 9. Tendencje zmian temperatury powietrza w niektórych miastach Europy (°C/100 lat) **Table 9.** The secular tendencies of air temperature in Europe (°C/100 lat)

Miejscowość	Okres	Zima	Lato	Rok
Warszawa	1779-1998	1,12	-0,06	0,58
Kraków	1827-1997	1,48	0,31	0,82
Wrocław	1792-2002	0,69	0,25	0,52
Lwów	1824-2002	0,53	-0,22	0,20
Praga	1771-1990	0,25	-0,25	-0,02
Berlin	1769-1990	0,32	-0,39	0,13
Genewa	1769-1980	0,51	-0,40	0,51
Wiedeń	1775-2002	0,69	-0,08	0,27
Rzym	1811-1989	0,04	-0,10	0,09
Sztokholm	1756-1994	0,86	-0,08	0,46
Kopenhaga	1768-1991	0,94	0,05	0,55
Moskwa	1779-2002	1,65	-0,15	0,68

W Europie (i Polsce) przede wszystkim zimy są coraz cieplejsze. Na przykład w Warszawie w latach 1779-1998 zimy są coraz cieplejsze – o 1,1°C na 100 lat, a lata chłodniejsze prawie o 0,1°C. Jeszcze większy wzrost temperatury powietrza podczas zimy występuje w Krakowie – 1,5°C/100lat i Moskwie – 1,6°C/100lat. Średnia roczna temperatura powietrza wzrasta w: Warszawie – o 0,6; Krakowie – o 0,8; Moskwie – o 0,7°C na 100 lat.

Nie wiadomo, jaka część postępującego ocieplenia klimatu jest efektem oddziaływania czynników naturalnych, a jaka – czynników antropogenicznych.

Ocieplenie klimatu w XIX-XX wieku może być wywołane wzrostem aktywności Słońca i spadkiem aktywności wulkanicznej na Ziemi.

Nie wiadomo jednak, jaki w tym jest udział zmian aktywności Słońca (stałej słonecznej), pyłów wulkanicznych ograniczających dopływ energii słonecznej do powierzchni Ziemi i antropogenicznego efektu cieplarnianego atmosfery.

Wraz z postępującym ociepleniem klimatu podnosi się poziom mórz i oceanów. Rekonstrukcje dawnych linii brzegowych wskazują, iż poziom mórz i oceanów podczas
ocieplenia klimatu jest znacznie wyższy niż w czasie ochłodzenia (zlodowacenia Ziemi). W czasie ostatniej fazy zlodowacenia Würm 18 000 lat temu poziom Atlantyku obniżył się około 135 m wraz z przyrostem pokrywy lodowej (Lamb, 1972-1977).

Ekwiwalentem obecnej pokrywy lodowej jest różnica poziomu oceanów 59,1-83,3 m. A więc obecna pokrywa lodowa na Ziemi (lody Arktyki, Antarktydy i lodowce górskie) stanowi 43,8-61,7% masy lodu sprzed 18 000 lat. Średnie tempo wzrostu poziomu oceanów w ciągu tych 18 000 lat wynosi zatem 75 cm/100 lat.

Wraz ze wzrostem średniej globalnej temperatury powietrza obserwuje się podnoszenie się poziomu oceanów – średnio o 10-25 cm w ostatnim stuleciu.

Poziom Morza Bałtyckiego wg stanów wody w Świnoujściu w latach 1811-1990 podnosi się średnio o 4,5 cm/100 lat.

Podnoszenie się poziomu mórz i oceanów w XIX-XX wieku wynika prawdopodobnie z rozszerzalności objętościowej wody. Objętość wód oceanów (bez mórz) obecnie wynosi 1370,4 mln km², a średnia głębokość 3704 m. Wzrostowi temperatury wody o 1°C (od 4 do 5°C) odpowiada przyrost poziomu oceanów o 18 cm.

JERZY BORYCZKA MARIA STOPA-BORYCZKA DARIUSZ BARANOWSKI MAŁGORZATA KIRSCHENSTEIN ELŻBIETA BŁAŻEK JAN SKRZYPCZUK

XVII. MROŹNE ZIMY I UPALNE LATA W POLSCE

atlas

WSPÓŁZALEŻNOŚCI PARAMETRÓW METEOROLOGICZNYCH I GEOGRAFICZNYCH W POLSCE

WARSZAWA 2003

SPIS TREŚCI (17)

Ι	WPROWADZENIE	7
Π	EKSTREMALNE ZJAWISKA POGODOWE W X-XVI WIEKU (wg kronik)	9
III	PRZESZŁOŚĆ I TERAŹNIEJSZOŚĆ KLIMATU ZIEMI	15
1.	Zarys klimatu minionych epok geologicznych	15
2.	Ochłodzenia i ocieplenia klimatu w ostatnich stuleciach	17
3.	Tendencje zmian klimatu w XVII-XX wieku	20
IV.	ROLA CYRKULACJI ATMOSFERYCZNEJ W KSZTAŁTOWANIU KLIMATU EUROPY	23
1.	Wpływ Niżu Islandzkiego i Wyżu Azorskiego na klimat Europy	23
2.	Kierunki adwekcji mas powietrza przy różnych typach cyrkulacji	24
3.	Dominujące kierunki i prędkości wiatru w Polsce	26
V.	MROŹNE ZIMY I UPALNE LATA W EUROPIE W XVIII-XXI WIEKU ZE SZCZEGÓL-	29
	NYM UWZGLĘDNIENIEM POLSKI.	
1.	Mroźne i łagodne zimy oraz ciepłe i chłodne lata	30
2.	Widma temperatury powietrza w Europie	31
3.	Zmiany temperatury powietrza w Europie w XVIII-XX wieku. Prognozy po rok 2100	31
VI	DOBOWE AMPLITUDY TEMPERATURY POWIETRZA W POLSCE I ICH ZALEŻ-	171
	NOŚĆ OD TYPÓW CYRKULACJI ATMOSFERYCZNEJ (1971-1995)	
1.	Dobowe wahania temperatury powietrza na obszarze Polski	178
2.	Zależność dobowej amplitudy temperatury od typów cyrkulacji atmosferycznej	181
3.	Zmienność dobowej amplitudy temperatury powietrza w przebiegu rocznym	182
VII	ZMIANY ROCZNE POLA OPADÓW ATMOSFERYCZNYCH W POLSCE I ICH UWA-	237
	RUNKOWANIA (1951-1995)	
1.	Roczne sumy opadów w Polsce	239
2.	Miesięczne sumy opadów	245
3.	Maksima i minima roczne sum opadów	246
4.	Amplituda roczna opadów	247
5.	Sumy opadów w porach roku	248
6.	Iloraz sezonowych sum opadów	251
VII	ZAKOŃCZENIE	285
	LITERATURA	289
	SUMMARY	295

Wprowadzenie

Celem pracy jest określenie zakresu zmian i wahań temperatury powietrza podczas sezonów zimowych (XII, I, II) i letnich (VI, VII, VIII) w Europie, ze szczególnym uwzględnieniem Polski.

Najpierw przedstawiono opisy niebezpiecznych zjawisk pogodowych w kronikach pogody w X-XVI wieku. Trudno nie zainteresować się informacją, że "w 1219 roku w Polsce przez cale lato padał deszcz, który rzadko ustawał. Z powodu powodzi był głód, zima była bardzo ciężka, a zimą 1322/1323 było między Danią, słowiańskim krajem i Jutlandią zamarznięte Morze Bałtyckie, tak że rozbójnicy, przychodząc ze słowiańskiego kraju, splądrowali niektóre okolice Danii, a pośrodku morza na lodzie były założone gospody dla przejezdnych".

Sporo miejsca poświęcono przeszłości i teraźniejszości klimatu Europy i Polski. Szczególną uwagę zwrócono na zmiany klimatu minionych epok geologicznych. Obecnie żyjemy w epoce lodowej (czwartorzędu), która rozpoczęła się 2 miliony lat temu i trwa nadal z pokrywa lodową znajdującą się na obu biegunach (na Antarktydzie i Arktyce).

Według zawartości substancji organicznych w osadach polskich jezior za datę holoceńskiego ochłodzenie klimatu Polski można przyjąć 12 000 BP (Jez. Wikaryjskie). Największe holoceńskie ocieplenie klimatu Polski (wg osadów Jez. Gościąż) wystąpiły 13 000-11 000 i 9 000-8 500 lat temu.

Rekonstrukcja temperatury powietrza w warstwie przyziemnej w różnych miejscach Ziemi w ostatnim tysiącleciu (według redukcji lodowców, szerokości pierścieni drzew i pomiarów bezpośrednich) wskazuje 3 zasadnicze przedziały czasu : "optimum średniowieczne" – 800-1200, "mała epoka lodowa" – 1400-1900 i współczesne ocieplenie – od 1900 roku.

W Europie (i Polsce) przede wszystkim zimy są coraz cieplejsze. Na przykład w Warszawie zimy są coraz cieplejsze o 1°C/100 lat, a lata o 0,1°C/100 lat. Średnia roczna temperatura wzrasta o 0,7 °C/100 lat.

Nie wiadomo, jaka część postępującego ocieplenia klimatu jest efektem oddziaływania czynników naturalnych, a jaka czynników antropogenicznych. Ocieplenie klimatu w XIX-XX wieku może być wywołane wzrostem aktywności Słońca i spadkiem aktywności wulkanicznej na Ziemi.

Temperaturę powietrza podczas zim w Warszawie i wskaźnik NAO cechuje analogiczna cykliczność z dominującym okresem 7,8-letnim. Podobieństwo tych cykli świadczy, iż zimy w Warszawie są kształtowane przez okresowe wahania wskaźnika NAO (cyrkulacji strefowej).

Najważniejszą część pracy stanowi rozdział V. Mroźne zimy i upalne lata w Europie w XVIII-XXI wieku, ze szczególnym uwzględnieniem Polski. Zawiera on wykresy zmian temperatury powietrza podczas zimy i lata w XVIII-XXI wieku w 40 miejscowościach europejskich. Widma temperatury powietrza i tendencje zmian, określone równaniami prostych regresji omówiono wcześniej – w rozdziale III. Przeszłość i teraźniejszość klimatu Ziemi. Szczególne znaczenie mają jednak prognozy klimatu do roku 2100 na podstawie interferencji silniejszych cykli zawartych w widmach. Prognozy wskazują na naturalne ochłodzenie klimatu Europy (i Polski) w XXI wieku, które częściowo może być złagodzone przez czynniki antropogeniczne (efekt cieplarniany i miejskie wyspy ciepła).

W tabelkach zestawiono po 10 najmroźniejszych i najłagodniejszych zim i po 10 najcieplejszych i najchłodniejszych lat.

Istotny jest również kolejny rozdział VI. Dobowe amplitudy temperatury powietrza w Polsce i ich zależność od typów cyrkulacji atmosferycznej (1971-1995), opracowany przez D. Baranowskiego. Szczególne znaczenie mają mapy izarytm średnich miesięcznych wartości dobowej amplitudy temperatury powietrza przy różnych kierunkach adwekcji mas powietrza i typach cyrkulacji cyklonalnej i antycyklonalnej (wg klasyfikacji Osuchowskiej-Klein). Rozdział ten jest rozszerzeniem badań autora rozpoczętych w pracy doktorskiej (2001). Innym ważnym elementem jest pole opadów atmosferycznych w Polsce (jego zmienność czasowa i przestrzenna) przedstawione w rozdziale VII – Zmiany roczne pola opadów atmosferycznych w Polsce i ich uwarunkowania (1951-1995), opracowanym przez autorów D. Baranowskiego i M. Kirschenstein. Zagadnienie to zostało częściowo rozwiązane wcześniej w pracy doktorskiej M. Kirschenstein pt. Wysokie dobowe sumy opadów atmosferycznych na obszarze północnozachodniej Polski i ich uwarunkowania (2000). Interesujące są mapy izarytm wskaźników (ilorazów), które wyróżniają obszary o cechach oceanicznych (kontynentalnych) klimatu Polski.

Ważniejsze wyniki badań zawarte w tomie XVII. *Atlasu* przedstawiono graficznie na licznych wykresach, tabelach i mapach.

Zakończenie

Wciągu ostatniego miliarda lat wystąpiło 6 wielkich epok lodowych: 950, 750, 620, 44, 280, 3-2 (zlodowacenie czwartorzędowe) – średnio co 190 milionów lat. Są to tzw. "zimy kosmiczne", których przyczyną może być obieg Układu Słonecznego dookoła środka naszej galaktyki (rok galaktyczny jest równy około 226 milionów lat).

Zlodowacenia Ziemi były efektem nakładania się trzech długich cykli: 100 000 lat – mimośrodu (ekscentryczności) orbity, 42 000 lat – nachylenia płaszczyzny ekliptyki do równika 21 000 lat – położenia peryhelium względem punktu równonocy wiosennej (według teorii Milankovicia, 1930) W ciągu ostatniego miliona lat wystąpiło 10 głównych ochłodzeń i 10 ociepleń klimatu.

Chronologiczne ciągi czasowe substancji organicznych zdeponowanych w osadach polskich jezior informują o holoceńskich wahaniach klimatu. Za datę holoceńskiego ochłodzenia klimatu Polski można przyjąć minimum substancji organicznej 11 000-9 000 w Jez. Gościąż. W przedziale czasu od -20 000 do -12 540 lat temu rekonstruowano zawartość substancji organicznych w osadach na podstawie interferencji cykli: 50, 230, 360, 390, 540, 590, 1 120, 1 380, 1 770, 2 970, 6 080, 12 380 lat

Rekonstrukcje temperatury powietrza w warstwie przyziemnej w różnych miejscach Ziemi w ostatnim tysiącleciu wskazuje trzy zasadnicze przedziały czasu: "optimum średniowieczne" – 800-1200, "mała epoka lodowa" – 1400-1900 i współczesne ocieplenie – od 1900 roku W ostatnich 400 latach wystąpiły trzy główne ochłodzenia klimatu Ziemi, o najmniejszej średniej globalnej temperaturze powietrza na półkuli północnej w pobliżu dat: 1600, 1700, 1830. Najbardziej poznane (na podstawie danych instrumentalnych) jest to ostatnie, największe ochłodzenie w Europie i Polsce (wg serii warszawskiej i krakowskiej). Trzeba zauważyć, że wystąpiło ono podczas trzech najsłabszych, wydłużonych (12-13-letnich) cykli aktywności Słońca (1798-1833). Ochłodzenie to pojawiło się w czasie najsłabszego 13-letniego cyklu plam słonecznych (1811-1823), podczas absolutnego minimum wiekowego (od 1700 r.) To ostatnie globalne ochłodzenie klimatu (także w Polsce) wystąpiło podczas wzmożonej aktywności wulkanicznej, po największych wybuchach wulkanów: 1803 – Cotopaxi, 1815 – Tambora, 1835 – Cosequina.

Ochłodzenia i ocieplenia klimatu są kształtowane wahaniem dopływu energii słonecznej do powierzchni Ziemi, zależnej od stałej słonecznej i zawartości pyłów wulkanicznych w atmosferze – pochłaniających i rozpraszających promieniowanie słoneczne.

Cyrkulacja atmosferyczna warunkuje transport magazynowanej głównie w strefie międzyzwrotnikowej, energii słonecznej w stronę biegunów.

Temperatura powietrza w Europie (i Polsce) cechuje się cyklicznością około 8-, 11-, 100- i 180-letnią. Cykle wyznaczono metodą "sinusoid regresji" J. Boryczki:

$$T = a_0 + b\sin\left(\frac{2\pi}{\Theta}t + c\right) \tag{9}$$

gdzie: Θ – okres , b – amplituda, c – przesunięcie fazowe).

W Europie (i w Polsce) dominują około 8-letnie okresy temperatury powietrza o dużych amplitudach $\Delta T = 2b = T_{max} - T_{min}$ (°C). Na przykład w zimie wynoszą one: Warszawa – 8,3 (1,59°C), Kraków – 8,3 (1,87°C), Wrocław – 8,3 (1,53°C), Lwów – 8,3 (1,30°C), Praga – 8,3 (1,06°C), Berlin – 7,7 (1,54°C), Genewa – 7,7 (0,62°C), Wiedeń – 8,3 (0,87°C), Rzym – 7,9 (0,30°C), Sztokholm – 7,8 (1,33°C), Kopenhaga – 7,8 (1,24°C), Moskwa – 7,9 lat (0,76°C). W lecie okresowość jest zbliżona, lecz amplitudy są prawie o połowę mniejsze.

Dużą rolę w kształtowaniu klimatu odgrywają długie cykle: 102- i 187-letni aktywności Słońca. Analogiczne okresy są obecne w seriach pomiarowych temperatury powietrza : Oto zimowe okresy około 100-letnie temperatury powietrza w Europie: Warszawa – 113,4, Kraków – 90,0, Wrocław – 123,3, Lwów – 108,8, Praga – 116,3, Wiedeń – 89,8, Bazylea – 85,5, Kopenhaga – 80,5, Anglia – 99,3, Sztokholm – 86,3, Uppsala – 102,7, Zbliżona okresowość około 100-letnia występuje również w lecie: Kraków – 88,0, Wrocław – 75,0, Lwów – 74,1, Praga – 118,3, Wiedeń – 96,1, Bazylea – 87,6, Kopenhaga – 89,6, Anglia – 102,5, Sztokholm – 89,4, Uppsala – 94,0, Insbruck – 84,6.

W najdłuższych seriach pomiarowych są obecne także okresy prawie dwuwiekowe, zbliżone do okresu planetarnego 178,9 lat, po upływie którego powtarzają się wartości parametrów Układu Słonecznego. Na przykład: Warszawa (zima – 218,3, lato – 208,2), Kraków (zima – 168,3), Lwów (lato – 195,3), Berlin (zima – 218,8), Kopenhaga (lato – 211,6), Anglia środkowa (zima – 166,9, lato – 204,6), Sztokholm (zima – 184,2), Uppsala (zima – 182,,3, lato – 192,8), Insbruck (zima – 169,9).

Tendencje temperatury powietrza (*a*), określone równaniami prostych regresji $T = a_0 + at$ w zimie są na ogół rosnące: Warszawa (1779-1998) – zima (1,12 °C/100 lat), lato (-0,06°C/100 lat), Kraków (1827-1997) – zima (1,48°C), lato (0,31°C), Lwów (1824-2002) – zima (0,53°C), lato (-0,22°C), Praga (1771-1990) – zima (0,25°C), lato (-0,25°C), Berlin (1769-1990) – zima (0,32°C), lato (-0,39°C), Genewa – zima (0,51°C), lato (-0,40°C), Wiedeń – zima (0,69°C),lato (-0,08°C), Rzym (1811-1969) – zima (0,04°C), lato (-0,10°C), Sztokholm (1756-1994) – zima (0,86°C), lato (-0,08°C), Kopenhaga – zima (0,94°C), lato (0,05°C), Moskwa – zima (1,65°C), lato (-0,15°C).

W Europie (i Polsce) przede wszystkim zimy są coraz cieplejsze. Nie wiadomo, jaka część postępującego ocieplenia klimatu jest efektem oddziaływania czynników naturalnych, a jaka – czynników antropogenicznych. Ocieplenie klimatu w XIX-XX wieku może być wywołane wzrostem aktywności Słońca i spadkiem aktywności wulkanicznej na ziemi.

Na klimat Europy (i Polski) dominujący wpływ mają dwa główne centra pola ciśnienia atmosferycznego: Niż Islandzki i Wyż Azorski. Te dwa centra ciśnienia związane z różnicą temperatury między wodą Atlantyku Północnego i lądem są w ciągu roku ze sobą ujemnie skorelowane (North Atlantic Oscillation, NAO). Wskaźnik NAO w latach 1825-2000 cechuje się okresowością 8-letnią, kilkunastoletnią i 106,3-letnią.

Wpływ cyrkulacji atmosferycznej na klimat Polski, także na dobową amplitudę temperatury powietrza (1971-1995), dobrze charakteryzuje częstość typów cyrkulacji według klasyfikacji Osuchowskiej-Klein.

Typy cyrkulacji o charakterze cyklonalnym charakteryzują się przeważnie mniejszymi dobowymi wahaniami temperatury powietrza niż antycyklonalne. Największe dobowe amplitudy temperatury powietrza w ciągu całego roku występują w antycyklonalnych typach cyrkulacji: G, D₂C. Najmniejsze dobowe amplitudy temperatury powietrza w Polsce obserwuje się najczęściej przy napływie do Polski powietrza z północy w typach: E, CB, E₂C oraz E.

Zmienność wiekową zim i lat w 40 miejscowościach europejskich scharakteryzowano, zestawiając po 10 najmroźniejszych i najłagodniejszych zim (średnich z XII, I, II) oraz po 10 najcieplejszych i najchłodniejszych lat (średnich z VI, VII, VIII).

Najmroźniejsza zima w Polsce wystąpiła w roku 1830 (Warszawa – -9,8°C, Kraków – -10,3; Wrocław – -10,3). Do mroźnych można zaliczyć także zimy: 1963 (Warszawa – -9,5; Kraków – -6,9; Wrocław – -8,4), 1929 (Warszawa – -7,9; Kraków – -7,7; Wrocław – -7,1) i 1940 (Warszawa – -8,8; Kraków – -7,4;; Wrocław – -7,1). Najłagodniejsze zimy wystąpiły w ostatniej dekadzie XX wieku: Warszawa – 1990 (2,3°C), 1989 (1,9°C), Kraków – 1975 (2,2°C), 1990 (1,9°C), Wrocław – 1990 (3,2°C), 1998 (2,8°C). Najcieplejsze pory letnie wystąpiły: w 1811 r. – 21,4°C, 1992 r. – 20,0°C i 2002 r. – 19,8°C

Rekonstrukcje i prognozy otrzymano na podstawie interferencji wykrytych cykli temperatury powietrza

$$y = a_o + \sum_{j=1}^{\kappa} b_j \sin\left(\frac{2\pi}{\theta_j}t + c_j\right)$$
(10)

gdzie: Θ_j , b_j , c_j – to parametry silnych cykli (istotnych na poziomie istotności 0,05).

W prognozach przyjęto założenie, że ekstrema wyznaczonych cykli o dość dużych amplitudach (istotnych) będą się powtarzać nadal, tak jak w XVIII-XX wieku. Według tych prognoz, w XXI wieku można oczekiwać ochłodzenia – zwłaszcza więcej mroźnych zim.

VIII. PROMOCJA METODY SINUSOID REGRESJI J. BORYCZKI W PUBLIKACJACH KATEDRY INŻYNIERII LEŚNEJ AKADEMII ROLNICZEJ W POZNANIU

Kompleksowa metodyka oceny stosunków wodnych w lasach

W monografii Prof. dr hab. inż., Antoniego T. Milera:

 Miler A. T., 2013, Kompleksowa metodyka oceny stosunków wodnych w lasach. Wyd. Uniwersytetu Przyrodniczego w Poznaniu, Poznań, ISBN 978-83-7160-696-0. ss. 135

zamieszczono rozdział 4.7. *Metody obliczania trendów i okresowości zmian klimatycznych* (str. 67-76, wzory 58-63) w którym omówiono 4 metody statystyczne, w tym *metodę sinusoid regresji J. Boryczki* (s. 74-76):

- Metoda szeregu Fouriera
- Rangowa metoda oceny trendu Mann-Kendalla
- Test Lombarda
- Metoda sinusoid regresji J. Boryczki (s. 74-76)

(PDF) Kompleksowa metodyka oceny stosunków wodnych w lasach. A ... https://www.researchgate.net/.../288835868_Kompleksowa_metodyka_oceny_stosunko...

Metoda sinusoid regresji J. Boryczki

Metoda J. Boryczki (1984) pozwala na wykrywanie rzeczywistych (optymalnych) okresów. Te optymalne okresy *T* zmian sekularnych wyznacza się przez eliminację sinusoid regresji:

$$y = a_o + b\sin\left(\frac{2\Pi}{T}t + c\right) \tag{58}$$

spośród T = 1, 2, ..., n, gdzie n - liczba pomiarów.

Poszukiwane okresy optymalne Tj to minima lokalne wariancji resztkowej ε^2 odpowiadające maksimum współczynnika korelacji wielokrotnej, odpowiadające maksimum

współczynnika korelacji wielokrotnej $R = \left(1 - \frac{\varepsilon^2}{s^2}\right)^{\frac{1}{2}}$, gdzie *s* jest odchyleniem standardowym zmiennej *y*. Model wykrywania optymalnych okresów jest weryfikowany za pomocą ostrego testu Fishera-Snedecora $F_{obl} = \frac{n-3}{2} \frac{R^2}{(1-R^2)}$ o 2 i *n*-3 stopniach swobody (*Zieliński, 1972*).

Znalezienie ukrytego okresu Tj - tj optymalnej sinusoidy regresji sprowadza się do wyznaczenia równania płaszczyzny regresji:

$$y = a_0 + \alpha x_1 + \beta x_2$$
 (59)

względem zmiennych $x_1 = \sin\left(\frac{2\Pi}{T}t\right)$, $x_2 = \cos\left(\frac{2\Pi}{T}t\right)$. Amplituda (b) elementu hydroklimatycznego i przesunięcie fazowe (c) określone są wzorami:

$$b = (\alpha^2 + \beta^2)^{\frac{1}{2}}, \quad \text{tg} \, c = \frac{\beta}{\alpha} \tag{60}$$

gdzie kąt spełnia warunki $\alpha = b \operatorname{sin} c$, $\beta = b \cos c$

Metodą optymalnych okresów można wyznaczyć odcinek sinusoidy regresji o okresie dłuższym niż długość ciągu pomiarowego (T > n). Można ją także stosować w przypadku niekompletnych ciągów chronologicznych (braku danych obserwacyjnych w niektórych latach). Metoda ta jednak zakłada liniowość systemu (tylko wtedy można

dokonywać stosownej superpozycji, czyli składania), co nie zawsze jest prawdziwe. Znając optymalne okresy *Tj* możemy wyznaczyć trend czasowy elementu hydroklimatycznego według równania:

$$y = f(t) = a_o + \sum_{j=1}^{\kappa} b_j \sin\left(\frac{2\Pi}{T_j}t + c_j\right)$$
(61)

minimalizując wariancję resztkową:

$$\varepsilon^{2} = \frac{1}{n} \sum_{i=1}^{n} [y_{i} - f(t_{i})]^{2}$$
(62)

gdyż okresy Tj są niewspółmierne.

Przez ekstrapolację funkcji trendu czasowego f(t) analizowanych zmiennych można dokonać ich rekonstrukcji (t < 0), bądź uzyskać prognozę (t > 0) z dowolnym wyprzedzeniem czasowym. Jeżeli do funkcji y = f(t), aproksymującej okresowe (naturalne) zmiany wynikające z nakładania się rzeczywistych cykli, dodamy składnik liniowy $\Delta y = a\Delta t$, to model trendu czasowego F(t) rozdzielimy na dwa składniki:

$$y = F(t) = a_o + at + \sum_{j=1}^{\kappa} b_j \sin\left(\frac{2\Pi}{T_j}t + c_j\right)$$
(63)

 $a_0 + at$ – odpowiada za zmiany antropogeniczne,

$$\sum_{j=1}^{k} b_j \sin\left(\frac{2\Pi}{T_j}t + c_j\right) - \text{odpowiada za zmiany naturalne wynikające z cykli rzeczywistych } T_j.$$

Składnik liniowy o stałej tendencji a = constans może wykazywać wpływ sukcesywnie postępujących zmian pochodzenia antropogenicznego. Jeżeli współczynnik regresji a > 0, to zmiany antropogeniczne mają tendencję wzrostową a gdy zaś a < 0 – tendencję spadkową.

Cytowana literatura *)

- Boryczka J. (1984): Model deterministyczno-stochastyczny wielookresowych zmian klimatu. Rozprawy Uniwersytetu Warszawskiego, nr 234, Warszawa.
- Boryczka J. (1993): Naturalne i antropogeniczne zmiany klimatu Ziemi w XVII-XXI wieku. Wydawnictwo Uniwersytetu Warszawskiego, Wydziału Geografii i Studiów Regionalnych.
- Gutry-Korycka M., Boryczka J. (1990): *Długookresowe zmiany elementów bilansu wodnego w Polsce i w zlewisku Bałtyku*. Przegląd Geofizyczny, zeszyt 3-4.
- Kożuchowski K., Żmudzka E. (2001): Ocieplenie w Polsce. Skala i rozkład sezonowy zmian temperatury powietrza w drugiej połowie XX wieku. Przegląd Geofizyczny, zeszyt 1-2.
- Žmudzka E. (1995): Tendencje i cykle zmian temperatury powietrza w Polsce w latach 1951-1990. Przegląd Geofizyczny, (rocznik 40) zeszyt 2
- Michalska A. (1998): Długookresowe zmiany opadów atmosferycznych w Polsce (maszynopis rozprawy doktorskiej), Warszawa.
- *) Zastosowano metodę "sinusoid regresji" w badaniach cykliczności zmiennych meteorologicznych i w prognozach.

Opracowanie strategii ochrony obszarów mokradłowych na terenie leśnych kompleksów ...

Praca wykonana przez Zespół Pracowników Katedry Inżynierii Leśnej Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu (kierownik tematu prof. dr hab. inż. Antoni T. Miler):.

 Opracowanie strategii ochrony obszarów mokradłowych na terenie leśnych kompleksów promocyjnych na przykładzie LKP Lasy Rychtalskie, ss. 150, Poznań 2007

zawiera rozdział 4. (str. 23-34), w którym omówiono trzy metody statystyczne • Metoda szeregu Fouriera

- Rangowa metoda oceny trendu Mann-Kendalla
- Metoda sinusoid regresji J. Boryczki (str. 31-34)

W rozdziale 4. Metody obliczania trendów i okresowości zmian klimatycznych (temperatur powietrza, opadów atmosferycznych (Str. 31-34, wzory 4.22 -.27) przedstawiono opis metody "sinusoid regresji" J. Boryczki. .

SPRAWOZDANIE KOŃCOWE - PDF - DocPlayer.pl

https://docplayer.pl/14657669-Sprawozdanie-koncowe.html

Akademia Roinicza *im. Augusta Cieszkowskiego,* 60-637 Poznań, ul. Wojska Polskiego 28, Katedra inżynierii Leśnej, 60-623 Poznań, ul. Mazowiecka 41 Tel./Fax. 061 848-7366, NIP 777-00-04-960

SPRAWOZDANIE KOŃCOWE

Nr zadania: 18

OPRACOWANIE STRATEGII OCHRONY <u>Tytuł</u>: OBSZARÓW MOKRADŁOWYCH NA TERENIE LEŚNYCH KOMPLEKSÓW PROMOCYJNYCH NA PRZYKŁADZIE LKP LASY RYCHTALSKIE

> Opracowanie wykonane dla DYREKCJI GENERALNEJ LASÓW PANSTWOWYCH ul. WAWELSKA 52/54 00-922 WARSZAWA

<u>Autorzy:</u> Prof. dr hab. inż. ANTONI T. MILER – kierownik tematu Prof. nadzw. dr hab. inż. BOGUSŁAW KAMIŃSKI Dr hab. inż. ANDRZEJ CZERNIAK Dr inż. SYLWESTER GRAJEWSKI Dr inż. BERNARD OKOŃSKI Mgr inż. ANNA KRYSZTOFIAK Mgr inż. MALGORZATA SOBALAK Inž. KAMILA PRZYSIECKA MACIEJ KAMIŃSKI

Pognań 2007

IX. ZAKOŃCZENIE

Prezentowany 40 tom *Atlasu wspólzależności parametrów meteorologicznych i geograficznych w Polsce* pt. *Anomalie klimatu w Europie w ostatnim tysiącleciu (X-XXI)* poświęcono głównie wahaniom temperatury powietrza i rocznym przyrostom drzew rosnących w Europie. Interesujące są też nowe rekonstrukcje i prognozy zmian temperatury powietrza w Polsce w latach 1500-2500.

W rozdziale II. Anomalie temperatury powietrza w Polsce w XVIII-XXI wieku – ekstrema temperatury powietrza w Polsce (minima i maksima) określono na podstawie wyników pomiarów wykonanych w trzech miastach: w Warszawie – w latach 1779-2017, Krakowie – 1826-2017 i Wrocławiu – 1792-2017.

Bardzo mroźne zimy o temperaturze $T_{inf} \leq T_{sr}$ -2 σ (BMZ) w tych trzech miastach w Polsce wystąpiły w latach:

1. Warszawa ($T_{inf} \leq -7,18$ °C)

1830 1940 1799 1838 1789 1871 1929 1963 1947 1841 1805 -9,20 -8,83 -8,60 -8,57 -8,30 -8,13 -7,67 -7,67 -7,50 -7,43 -7,23 2. Kraków (T \leq -6,46 $^{\circ}C$)

1830 1963 1940 1871 1838 1841 1947

-10,30 -8,03 -7,43 -7,20 -7,17 -7,17 -6,93

3. Wrocław ($T \le -5,63 \,^{\circ}\text{C}$)

1830 1799 1929 1940 1947 1963 1827 1838 1871

-10,30 -7,77 -6,99 -6,99 -6,59 -6,59 -6,5 -6,07 -5,93

Ekstremalne wartości średniej temperatury powietrza w Warszawie w zimie w latach 1779-2017 przedstawiono na (rys. 1-2).

W rozdziale III. Anomalie temperatury powietrza w Europie w miastach w profilu południkowym (XVIII-XXI) określono ekstrema temperatury powietrza (lokalne minima i maksima) na podstawie wyników pomiarów w trzech miastach: w Paryżu – w latach 1757-2011, Berlinie – 1769-2017 i Moskwie – 1780-2017.

Za wyjątkowe pod względem termicznym uznano te miesiące, pory roku i rok, w których średnia temperatura (*T*) różni się od średniej wieloletniej (T_{sr}) co najmniej o 2 odchylenia standardowe (σ): $T_{\text{inf}} \leq T_{\text{sr}}$ -2 σ , $T_{\text{sup}} \geq T_{\text{sr}}$ -4 σ .

O anomaliach termicznych klimatu (największych ochłodzeniach i ociepleniach) informują daty wieloletnich minimów (t_{inf} , T_{inf}) i maksimów (t_{sup} , T_{sup}).

Bardzo mroźne zimy o temperaturze $T_{inf} \leq T_{sr}$ -2 σ (BMZ) w tych trzech miastach wystąpiły w latach:

1. Paryż $(T_{inf} \le 0.251 \text{ °C})$

1830 1880 1963 1795 1784 1891 1789 -1,60 -1,43 -1,13 -0,80 -0,57 -0,53 0,10 2. Berlin $(T_{inf} \le -3,959 \ ^{\circ}C)$

1830 1940 1947 1823 1838 1799 1963 1805 1929 1800 1784 -6,63 -6,00 -5,20 -5,10 -5,00 -4,97 -4,93 -4,53 -4,33 -4,20 -4,00 3. Moskwa ($T_{\rm inf} \leq$ -14,21 $^{\rm o}{\rm C}$)

1893 1942 1956 -16,83 -15,03 -14,53

W rozdziale IV. Anomalie temperatury powietrza w Europie w miastach w profilu równoleżnikowym (XVIII-XXI) – ekstrema temperatury powietrza (lokalne minima i maksima) wyznaczono na podstawie wyników pomiarów w czterech miastach: w Sztokholmie – w latach 1756-2012, Tallinie – 1779-2017, Wiedniu – 1775-2012 i Rzymie – 1811-2012.

Bardzo mroźne zimy o temperaturze $T_{inf} \leq T_{sr}$.-2 σ (BMZ) w tych czterech miastach w Europie wystąpiły w latach:

1. Sztokholm ($T_{inf} \leq -7,183 \text{ °C}$)

1809 1814 1871 1942 1789 1893 1805 1767 -8,67 -8,23 -8,17 -7,83 -7,70 -7,40 -7,27 -7,23 2. Tallin $(T_{inf} \le -9,805 \text{ °C})$ 1829 1942 1871 1809 1820 1838 1789 1893 -11,83 -11,80 -11,17 -10,97 -10,53 -10,53 -10,33 -10.07 3. Wiedeń $(T_{inf} \le -0.44 \text{ °C})$ 1929 1940 1838 1942 1830 -2,30 -1,97 -1,93 -1,82 -1,59 1963 1858 -0,83 -0,76 4. Rzym $(T_{inf} \le 5,96 \ ^{\circ}C)$ 1929 1858 1880 1942 1901 1905 1891 5,20 5,47 5,47 5,70 5,87 5,97 5,97

Najbardziej mroźne zimy – o najniższych wartościach temperatury T_{\min} (°C) w profilach południkowym $T(\lambda)$ i równoleżnikowym $T(\varphi)$ wystąpiły w latach:

Profil $T(\lambda)$	t_{\min}	T_{\min}	Profil $T(\varphi)$	t_{\min}	T_{\min}
Paryż	1830	-1,60	Sztokholm	1809	-8,67
Berlin	1830	-6,63	Tallin	1829	-11,83
Warszawa	1830	-9,20	Wiedeń	1929	-2,30
Kraków	1830	-10,30	Wroclaw	1830	-10,30
Moskwa	1893	-16,83	Rzym	1929	5,20

Porównano histogramy i dystrybuanty empiryczne temperatury powietrza w zimie, w Warszawie, Paryżu i Tallinie z rozkładem normalnym (Gaussa) i dystrybuanta.

W rozdziale X. *Zakończenie* dodatkowo przedstawiono po 10 najchłodniejszych i 10 najcieplejszych: miesięcy styczeń i lipiec, lat i zim oraz roku w 8 miastach w Europie w profilach południkowym i równoleżnikowym. Ponadto porównano na wykresach ($T^{\circ}C$, t - czas) najchłodniejsze (t_{min} , T_{min}) i najcieplejsze (t_{max} , T_{max}) zimy i rok – w profilu południkowym: Paryż, Berlin, Warszawa i Moskwa (tab.1-10, rys. 3-6) i równoleżnikowym; Sztokholm, Tallin, Wiedeń i Rzym) (tab.11-20, rys. 7-10).

W przypadku zim jest też porównanie na wykresach z mroźnymi zimami według kronik historycznych.

Ponadto, uaktualniono niektóre tabele, korzystając z wartości średniej temperatury powietrza w miesiącach (styczeń-sierpień) i porach roku (zima, wiosna, lato) w bieżącym roku 2018:

	Ι	Π	III	IV	V	VI	VII	VIII	XII-II	III-V	VI-VIII
Warszawa	0.80	-3.20	0.90	13.77	18.30	19.70	21.50	21.10	0.03	10.99	20.77
Kraków	0.90	-3.00	0.70	13.79	17.20	18.80	19.90	20.60	-0.13	10.56	19.77
Wrocław	3.30	-1.80	1.90	13.50	17.80	19.50	20.80	22.00	1.63	11.07	20.77
Berlin	3.70	-0.80	2.00	14.00	18.00	19.60	22.10	22.20	2.27	11.33	21.30
Tallin	-1.70	-6.40	-3.10	5.60	14.40	14.90	20.20	18.20	-2.33	5.63	17.77
Moskwa	1.21	-1.26	3.07	6.95	13.82	13.89			-1.08	7.95	

Na przykład w Berlinie w okresie 1796-2018, najcieplejsze lato było w roku 2018

(spośród 223 lat). Średnia z miesięcy letnich wynosi $T_{\text{sr}} = (\frac{19,60+22,10+22,20}{3}) = 21,30 \text{ °C}$

W rozdziale V. Anomalie klimatu Europy w ostatnim tysiącleciu X-XX według danych dendrologicznych za wyjątkowy pod względem termicznym (i opadów) uznano ten rok, w którym grubość słoja danego drzewa (d_{inf}) różni się od średniej wszystkich jego słojów (d_{sr}) (średniej wieloletniej) co najmniej o dwa odchylenia standardowe (σ). Prawdopodobnie w przypadku $d_{inf} \leq d_{sr}$ -2 σ -był to rok bardzo zimny (BZ), a przy $d_{sup} \geq d_{sr}$ +2 σ - bardzo ciepły (BC).

W podrozdziale 5.1. *Mroźne zimy w Polsce w X-XVI wieku według źródeł histo-rycznych*) porównano minima lokalne (t_{inf} , d_{min}) szerokości słojów czterech najstar-szych drzew rosnących w Europie z datami mroźnych zim od 940 roku według kronik historycznych (sosna – Forfjorddalen , 877-1994, Norwegia; dąb – Pomorze wschodnie, 996-1985, Polska; dąb – Ardeny,1118-1986, Belgia; modrzew – Les Merveilles 2, 988-1974, Francja).

W podrozdziałach 5.2. *Ekstrema szerokości słojów drzew rosnących w Europie* (*VII-XX*) i 6.3. *Ekstrema szerokości słojów dębów rosnących w Polsce (X-XX)* wzięto pod uwagę roczne przyrosty drzew badanych pod względem okresowości w *Atlasie*. t. XX-XXI. Analizie statystycznej poddano słoje 30 drzew – sosny, świerka, modrzewia, jodły i dębu rosnących w Europie oraz 14 dębów – z obszaru Polski.

Na przykład daty ekstremów (minimów t_{inf} , i maksimów t_{sup}) szerokości słojów sosny (*Pinus sylvestris*) w Muddas (1532-1972, Szwecja), gdzie $d_{sr} = 0,998$, $\sigma = 0,2290$ wynoszą (rys. 11-12):

```
d_{\rm inf} \leq d_{\rm sr}-2\sigma \leq 0,539
```

18271755157517661826169115371,4581,4841,5021,5401,5611,5711,804

Ponadto zamieszczono minima szerokości słojów sosny (*Pinus sylvestris*) w Forfjorddalen (877-1994, Norwegia); $d_{sr} = 0,995$, $\sigma = 0,2476$ (tab. 10-11, rys. 15-16) oraz minima szerokości słojów dębu (*Quercus petraea*) na Pomorzu Wschodnim (966-1985); $d_{sr} = 9,999$, $\sigma = 1,4018$, porównując je z mroźnymi zimami według kronik historycznych (tab. 21-24,, rys. 13-16).

W rozdziale VI. *Rekonstrukcja i nowe prognozy temperatury powietrza w Polsce w tysiącleciu 1500-2500* przedstawiono zmiany temperatury powietrza w Polsce w na podstawie wyników pomiarów: w Warszawie – z lat 1779-2015, Krakowie –1826-2017) i Wrocławiu – 1792-2017, według interferencji cykli wyznaczonych metodą sinusoid regresji J. Boryczki (1998).

Rekonstrukcje i prognoz) wykonano według interferencji k najistotniejszych statystycznie ("najsilniejszych"), poniżej zestawionych cykli, gdzie: Θ – okresy, b – amplitudy b, c – fazy c cykli temperatury powietrza w Warszawie w zimie w latach 1779-2015, ϵ^2 – wariancja resztkowa, R- współczynnik korelacji wielokrotnej, F_{obl} – test Fishera-Snedecora:

Θ	b	С	ϵ^2	R	$F_{\rm obl}$
3,3	0,572119	-1,333062	5,450	0,172	3,629
5,2	0,632682	-0,658662	5,409	0,192	4,555
8,3	0,830451	1,932767	5,280	0,245	7,561
15,3	0,463434	0,873822	5,493	0,149	2,673
18,1	0,421194	1,416745	5,490	0,150	2,739
22,3	0,306717	-1,492471	5,566	0,095	1,084
41,6	0,313256	1,783268	5,561	0,100	1,191
77,4	0,285585	-3,046547	5,499	0,145	2,541
118,5	0,532814	1,734579	5,427	0,184	4,147
178,9	0,290397	2,146905	5,561	0,100	1,191

.W rekonstrukcji i prognozach zmian temperatury powietrza w latach 1500-2500 uwzględniono dwa rodzaje wypadkowych interferencji cykli – ze składnikiem liniowym $F(t) = a_0 + a t + ...$ i bez składnika liniowego – f(t), (at = 0). Cykle weryfikowano testem Fishera-Snedecora o 2 i *n*-3 stopniach swobody (test, $F_{obl} > F_{kr}$).

Na przykład zmiany temperatury powietrza F(t) w Warszawie w zimie w latach 1600-2200 według interferencji cykli F(t) (R=0,546) – z uwzględnieniem tendencji 0,483 °C/100 lat przedstawiono na rys. 17, a według interferencji cykli f(t) – bez składnika liniowego w latach 1500-2500 na rys. 18.

$$F(t) = -1.135666 + 0.004831 t +$$

+ 0,5721sin
$$(\frac{2\pi}{3,3}t - 1,3331)$$
+ 0,6327sin $(\frac{2\pi}{5,2}t - 0,6587)$ + 0,8304sin $(\frac{2\pi}{8,3}t + 1,9328)$ +
+ 0,463434sin $(\frac{2\pi}{15,3}t + 0,8738)$ + 0,4212sin $(\frac{2\pi}{18,1}t + 1,4167)$ + 0,3067sin $(\frac{2\pi}{22,3}t - 1,4925)$ +
+ 0,3133sin $(\frac{2\pi}{41,6}t + 1,7833)$ + 0,2856 sin $(\frac{2\pi}{77,4}t - 3,0465)$ + 0,5328 sin $(\frac{2\pi}{118,5}t + 1,7346)$ +
+ 0,2904 sin $(\frac{2\pi}{178,9}t + 2,1469)$ (2)

W rozdziale VII. *Problemy badań współczesnych zmian klimatu Ziemi* najpierw omówiono przyczyny naturalne i antropogeniczne ochłodzeń i ociepleń klimatu Ziemi. Na naturalną zmienność klimatu, wynikającą z przyczyn zewnętrznych (astronomicz-nych) i wewnętrznych (geologicznych) systemu Ziemia-atmosfera, nakładają się efekty oddziaływań antropogenicznych.

Postępującemu globalnemu ociepleniu klimatu przypisywany jest zwykle wzrost efektu cieplarnianego, wywołanego przez gazy szklarniowe – głównie dwutlenek węgla (CO_2). W modelach wg scenariuszy $2xCO_2$ ocenia się, że po podwojeniu stężenia CO_2 w atmosferze (względem stanu początkowego 280 ppm) nastąpi wzrost temperatury powietrza np. w raporcie IPCC 2007 – o 1,1-6,4 °C pod koniec XXI wieku w odniesieniu do lat 1850-1900.

Interesujące są wyniki badań stężenia CO_2 i temperatury (wg izotopu tlenu ¹⁸O) w ciągu ostatnich 160 000 lat na podstawie rdzeni lodowych na stacji Vostok (WMO, 1990). Zgodność dat dwóch głównych maksimów stężenia CO_2 i temperatury (współczesnych i odległych 125 000 lat temu) świadczy, że zawartość dwutlenku węgla w atmosferze może wynikać z większego parowania wód oceanów ("ciężkiej wody") ze wzrostem temperatury powietrza.

Postępujące współczesne globalne ocieplenie może też wynikać z tendencji malejącej wskaźnika *DVI* w latach 1680-1980 i z większych odstępów czasu miedzy kolejnymi wybuchami wulkanów. Na stałą słoneczną ma niewątpliwie wpływ drobny pył, pozostający w stratosferze przez wiele lat.

Znamienne jest, że minimum absolutne trendu czasowego temperatury powietrza w Europie w ostatnich dwóch stuleciach (1779-1990) przypada na minimum absolutne aktywności Słońca (na najsłabszy cykl 13-letni plam słonecznych 1811-1823) i jedno-czenie na maksimum wiekowe aktywności wulkanicznej (wybuchy wulkanów Tambora w 1815 r. – o DVI = 3000 i Coseguina w 1835 r. – o DVI = 4000).

W podrozdziale 7.1. Zmiany wiekowe klimatu Europy z uwzględnieniem prognoz w XXI wieku i ich weryfikacja omówiono cykliczne zmiany klimatu Europy, tendencje wiekowe, rekonstrukcję i prognozy zmian temperatury w XXI wieku oraz ich sprawdzalność (weryfikację). Rekonstrukcję i prognozy oraz ich sprawdzalność, ze szczególnym uwzględnieniem Polski (Warszawy) przedstawiono obszernie w Atlasie – t. XXXIII i t. XXXVI:

- Boryczka J., Stopa-Boryczka M., 2015, Atlas wspólzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXIII. Zmiany wiekowe klimatu Europy z uwzględnieniem prognoz w XXI wieku i ich weryfikacja (red.: K. Błażejczyk, M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski), Wyd. UW, Warszawa, ss. 444.
- Boryczka J., Stopa-Boryczka M., 2017, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXVI. Postęp badań zmian klimatu Ziemi w ostatnim tysiącleciu (XI-XXI), red. M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski, Wyd. UW, Warszawa, ss. 407.

Zweryfikowano najwcześniejsze prognozy zmian wartości średnich miesięcznych, sezonowych lub rocznych temperatury powietrza w Warszawie – 1779-1979 (Boryczka, 1984, Boryczka i in., 1992) i 1779-1990 (Boryczka i in., 2000). Weryfikacja tych prognoz polega zatem na zbadaniu synchroniczności przebiegów (koincydencji ekstremów) wartości temperatury zmierzonych T i prognozowanych F(t), f(t), z zastosowaniem odpowiednich testów statystycznych.

Porównano zmierzone wartości temperatury powietrza w Warszawie-Okęciu w latach 1951-2010 z prognozowanymi z wyprzedzeniem 31 lat i 20 lat. Dobrą sprawdzalnością cechują się prognozy temperatury powietrza w Warszawie na lata 1980-2010 i 1991-2010 z 1984 i 2000 roku, według cykli wykrytych metodą "sinusoid regresji" w seriach wyników pomiarów w Warszawie-Obserwatorium Astronomiczne w latach 1779-1979.

W kolejnym podrozdziale 7.2. *Postęp badań zmian klimatu Ziemi w ostatnim tysiącleciu (XI-XXI)* omówiono zmiany klimatu Ziemi i ich przyczyny określone według promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$, izotopu tlenu δ^{18} O w rdzeniu lodowym z wyspy Devon, substancji organicznych w polskich jeziorach, danych dendrologicznych, meteorologicznych, astronomicznych i historycznych (Atlas, t. XXXVI).

Zmiany klimatu Ziemi (rekonstrukcję od 1 miliona lat temu i prognozę na przyszły 1 milion lat) scharakteryzowano według promieniowania słonecznego na równoleżniku $\varphi = 65^{\circ}$ N. W obliczeniach sum promieniowania słonecznego *I* (MJ· m⁻²) w miesiącach marzec-wrzesień (III-IX) na górnej granicy atmosfery, wzdłuż równoleżnika $\varphi = 65^{\circ}$ N. posłużono się teorią M. Milankoviča (1930)., wydłużając cykl mimośrodu orbity eliptycznej: Ziemi (0≤ *e* ≤ 0,066) z 92 000 lat do 100 000 lat. Okres 100 000 lat, wykryto w zmianach izotopu tlenu ¹⁸O zawartego w węglanach wapnia osadów głębokomorskich (Hays i in. 1976).

Ostatnie zlodowacenie Ziemi wystąpiło podczas ostatniego głębokiego minimum $(t_{\min} = -22000 \text{ lat temu}, I_{\min} = 5784,871 \text{MJm}^{-2})$ sum promieniowania słonecznego w miesiącach marzec-wrzesień. Natomiast holoceńskie ocieplenie (optimum klimatu) przypada na ostatnie lokalne "rozległe" maksimum $(t_{\max} = -11\ 000 \text{ lat BP}, I_{\max} = 6815,937\ \text{MJm}^{-2})$ sum promieniowania słonecznego w okresie marzec-wrzesień . (rys. 19). Istotne znaczenie mają też wyniki badań przedstawione w podrozdziałach: 7.3. *Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według danych dendrologicznych* i 7.4. *Postęp badań naturalnych zmian klimatu Europy w pierwszej dekadzie XXI wieku w odniesieniu do drugiej połowy XX wieku*.

Na przykład w Warszawie w zimie, trendy czasowe temperatury powietrza w latach 1779-1998 T = f(t) są wypadkową nakładania się 12 cykli obecnych w widmie temperatury, w tym najdłuższych 113.1 lat i 218.3 lat:

$$\begin{aligned} f(t) &= -2,634+ \\ &+ 0,5148 \sin\left(\frac{2\pi}{2.6} t - 1,327\right) + 0,5715 \sin\left(\frac{2\pi}{3.5} t + 0,5523\right) + 0,6238 \sin\left(\frac{2\pi}{5.2} t + 0,05656\right) + \\ &+ 0,4422 \sin\left(\frac{2\pi}{5.7} t + 2,486\right) + 0,7067 \sin\left(\frac{2\pi}{7.7} t - 0,7303\right) + 0,7349 \sin\left(\frac{2\pi}{8.3} t - 2,370\right) + \\ &+ 0,4829 \sin\left(\frac{2\pi}{8.7} t - 0,3237\right) + 0,4078 \sin\left(\frac{2\pi}{12.9} t + 0,1328\right) + 0,456 \sin\left(\frac{2\pi}{15.2} t + 2,318\right) + \\ &+ 0,4940 \sin\left(\frac{2\pi}{18.0} t - 3,058\right) + 0,3645 \sin\left(\frac{2\pi}{113.1} t + 2,040\right) + 0,8946 \sin\left(\frac{2\pi}{218.3} t + 3,073\right) \end{aligned}$$

O dobrej zgodności wyników pomiarów (*T*) na Okęciu z prognozowanymi zmianami temperatury powietrza w zimie na lata 1991-2015 według interferencji cykli f(t)świadczy współczynnik korelacji $r_{3.} = 0.516$, istotny na poziomie 0,01 ($r_{0.01} = 0,487$). (rys. 20).

Na uwagę zasługuje rozdział VIII. Promocja metody sinusoid regresji J. Boryczki w publikacjach Katedry Inżynierii Leśnej Akademii Rolniczej w Poznaniu. W monografii:

 Miler A. T., 2013, Kompleksowa metodyka oceny stosunków wodnych w lasach. Poznań, ss. 135 (https://www.researchgate.net/.../288835868)

zamieszczono rozdział 4.7. *Metody obliczania trendów i okresowości zmian klimatycz-nych* (str. 67-76, wzory 58-63) w którym omówiono metodę sinusoid regresji na podstawie publikacji J. Boryczki (1984, 1993)

Rozdział X. Wykaz prac magisterskich Zakładu Klimatologii UW dotyczących cykliczności i tendencji zmian klimatu w Europie (1984-2015) zawiera prace z zakresu wahań temperatury powietrza, opadów i cyrkulacji atmosferycznej w niektórych miastach Europy.

Tabela 1. Najchłodniejszy styczeń (t_{min} , T_{min}) w Paryżu (1757-2011), Berlinie (1769-2018), Warszawie (1779-2018) i Moskwie (1780-2017)

Table 1. The coldest January (t_{min} , T_{min}) in Paris (1757-2011), Berlin (1769-2018), Warsaw (1779-2018) and Moscow (1780-2017)

Paryż (Paryż (1757-2011)		Berlin ((1769-2018)		(1779-2018)	Moskwa (1780-2017)	
t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}
1795	-6,30	1823	-11,90	1838	-13,50	1893	-21,70
1838	-4,60	1838	-10,20	1803	-13,20	1942	-20,30
1776	-3,90	1776	-9,80	1823	-13,00	1940	-19,50
1963	-2,60	1940	-9,60	1848	-13,00	1848	-18,30
1830	-2,50	1848	-9,50	1940	-12,10	1950	-18,10
1763	-2,40	1803	-8,70	1893	-12,00	1891	-17,70
1940	-2,40	1795	-8,30	1987	-12,00	1850	-17,60
1799	-2,10	1830	-7,40	1850	-11,70	1987	-17,60
1829	-2,10	1893	-7,40	1963	-11,60	1838	-17,20
1985	-2,10	1963	-7,30	1942	-10,90	1780	-17,10

Tabela 2. Najcieplejszy styczeń (t_{max} , T_{max}) w Paryżu (1757-2011), Berlinie (1769-2018), Warszawie (1779-2018) i Moskwie (1780-2017)

Table 2. The warmest Januaryr (t_{max} , T_{max}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Paryż (1757-2011)		Berlin ((1769-2018)		Warszawa	(1779-2018)	Moskwa (1780-2017)	
t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$
1999	6,90	2008	4,00	1944	1,50	1949	-3,90
1916	7,00	1873	4,10	1990	1,90	1975	-3,90
1921	7,00	1902	4,10	1936	2,00	1925	-3,80
1834	7,10	1916	4,10	1989	2,20	1944	-3,80
1988	7,10	1866	4,30	1994	2,30	1971	-3,70
1974	7,20	1983	4,80	1921	2,60	1994	-3,40
2008	7,30	1921	5,00	1975	2,70	1882	-3,10
1975	7,40	1975	5,00	1983	3,40	2005	-3,00
1796	7,80	2007	5,40	1796	3,50	1989	-2,20
2007	8,40	1796	6,50	2007	3,70	2007	-1,60

Tabela 3. Najchłodniejsze lipce (t_{min}, T_{min}) w Paryżu (1757-2011), Berlinie (1769-2017), Warszawie (1779-2017) i Moskwie (1780-2017)

 Table 3. Coldest July (t_{min}, T_{min}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Paryż (1757-2011)		Berlin ((1769-2018)		Warszawa	(1779-2018)	Moskwa (1780-2017)	
t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}
1919	15,20	1979	15,10	1832	14,60	1904	14,50
1795	15,50	1954	15,40	1844	15,40	1912	14,60
1816	15,60	1815	15,50	1979	15,60	1935	15,10
1879	15,60	1962	15,50	1907	16,00	1956	15,20
1888	15,70	1898	15,60	1913	16,00	1911	15,40
1909	15,70	1832	15,70	1984	16,10	1921	15,60
1860	15,80	1965	15,80	1898	16,20	1968	15,70
1841	16,10	1974	15,80	1878	16,30	1923	15,80
1965	16,10	1844	15,90	1974	16,30	1950	15,80
1890	16,30	1812	16,20	1864	16,40	1909	16,00

Tabela 4. Najcieplejsze lipce (t_{max}, T_{max}) w Paryżu (1757-2011), Berlinie (1769-2018), Warszawie (1779-2018) i Moskwie (1780-2017)

Table 4. The warmest July (t_{max}, T_{max}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Paryż (1	Paryż (1757-2011)		Berlin ((1769-2018)		(1779-2018)	Moskwa (1780-2017)	
t _{max}	T_{max}	t _{max}	$T_{\rm max}$	t _{max}	T_{max}	t _{max}	$T_{\rm max}$
1807	21,80	1995	21,70	1826	21,40	1846	22,00
1999	21,80	1778	21,80	1932	21,40	1885	22,00
1983	21,90	1865	21,80	2014	21,40	2002	22,60
1859	22,00	2014	21,90	1959	21,50	1936	22,70
		2018	22,10	2018	21,50		
1994	22,10	1794	22,20	1865	21,60	1841	22,80
2010	22,50	1826	22,50	1789	21,80	1839	22,90
1794	22,60	2010	23,30	2010	21,87	2001	23,00
1762	23,30	1994	23,40	1994	22,30	1938	23,30
1757	24,60	1834	23,60	1811	22,50	2011	23,30
2006	24,90	2006	24,30	2006	23,51	2010	26,20

Tabela 5. Najchłodniejsze lata (t_{min} , T_{min}) w Paryżu (1757-2011), Berlinie (1769-2017), Warszawie (1779-2017) i Moskwie (1780-2017)

Table 5. The coldest summers (t_{\min}, T_{\min}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Paryż (1757-2011)		Berlin ((1769-2018)		Warszawa	(1779-2018)	Moskwa (1780-2017)	
t _{min}	T_{\min}	t _{min}	T_{\min}	t_{\min}	T_{\min}	t_{\min}	T_{\min}
1816	15,30	1962	15,43	1913	15,47	1904	13,60
1860	15,40	1844	15,83	1832	15,57	1928	14,57
1956	15,93	1816	16,07	1923	15,57	1976	14,67
1978	15,97	1965	16,07	1844	15,70	1899	14,70
1909	16,00	1805	16,13	1907	15,77	1923	14,73
1882	16,10	1956	16,13	1821	16,00	1825	14,77
1916	16,13	1987	16,17	1902	16,00	1962	14,77
1888	16,17	1984	16,20	1919	16,03	1950	14,90
1841	16,17	1974	16,23	1785	16,20	1888	14,97
1890	16,17	1806	16,27	1899	16,23	1916	15,10

Tabela 6. Najcieplejsze lata (t_{max}, T_{max}) w Paryżu (1757-2011), Berlinie (1769-2018), Warszawie (1779-2018) i Moskwie (1780-2017)

Table 6. The warmest summers (t_{max}, T_{max}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Paryż (1757-2011)		Berlin ((1769-2018)		Warszawa	(1779-2018)	Moskwa (1780-2017)	
t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$
1997	20,47	2006	20,20	1807	19,87	1854	19,57
1976	20,63	2010	20,20	2006	19,89	1936	19,77
2010	20,63	1868	20,27	1797	19,90	1999	19,83
1947	20,70	1819	20,37	1783	20,00	1850	20,07
1761	20,93	1992	20,47	1784	20,20	1972	20,07
1762	20,93	2003	20,47	2015	20,27	2011	20,27
2006	21,03	1775	20,53	1939	20,60	1938	20,27
1757	21,07	1781	20,90	1992	20,60	1839	20,87
1775	21,27	1826	21,00	1781	20,70	1841	21,63
2003	22,60	1834	21,23	2018	20,77	2010	22,20
		2018	21,30	1811	21,60		

Tabela 7. Najchłodniejsze zimy (t_{min} , T_{min}) w Paryżu (1757-2011), Berlinie (1769-2018), Warszawie (1779-2018) i Moskwie (1780-2017)

 Table 7. The coldest winters (t_{min} , T_{min}) in Paris (1757-2011), Berlin (1769-2018), Warsaw (1779-2018) and Moscow (1780-2017)

Paryż (Paryż (1757-2011)		Berlin ((1769-2018)		(1779-2018)	Moskwa (1780-2017)	
t _{min}	T_{\min}	t_{\min}	T_{\min}	t_{\min}	T_{\min}	t_{\min}	T_{\min}
1830	-1,600	1830	-6,633	1830	-9,200	1893	-16,833
1880	-1,433	1940	-6,000	1940	-8,833	1942	-15,033
1963	-1,133	1947	-5,200	1799	-8,600	1956	-14,533
1795	-0,800	1823	-5,100	1838	-8,567	1838	-14,033
1784	-0,567	1838	-5,000	1789	-8,300	1840	-13,667
1891	-0,533	1799	-4,967	1871	-8,133	1889	-13,500
1789	0,100	1963	-4,933	1929	-7,667	1883	-13,467
1845	0,400	1805	-4,533	1963	-7,667	1789	-13,300
1942	0,400	1929	-4,333	1947	-7,500	1841	-13,267
1841	0,500	1800	-4,200	1841	-7,433	1940	-12,967

Rys. 1. Zmiany temperatury powietrza w Warszawie w zimie w latach 1779-2017 **Fig. 1.** Changes of air temperature in Warsaw in Winter in the 1779-2017 years

Rys. 2. Ekstremalne wartości średniej temperatury powietrza w Warszawie w zimie w latach 1779-2017 **Fig. 2**. Extreme values of average air temperature in Warsaw in Winter in the 1779-2017 years.

Rys 3. Najchłodniejsze zimy (t_{min} , T_{min}) w Paryżu (1757-2011), Berlinie (1769-2018), Warszawie (1779-2018) i Moskwie (1780-2017)

Fig. 3. The coldest winters (t_{min}, T_{min}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Tabela 8. Najcieplejsze zimy (t_{max}, T_{max}) w Paryżu (1757-2011), Berlinie (1769-2018), Warszawie (1779-2018) i Moskwie (1780-2017)

Table 8. The warmest winters (t_{max} , T_{max}) in Paris (1757-2011), Berlin (1769-2018), Warsaw (1779-2018) and Moscow (1780-2017)

Paryż (1757-2011)		Berlin ((1769-2018)		Warszawa	(1779-2018)	Moskwa (1780-2017)	
$t_{\rm max}$	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$	t _{max}	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$
2002	6,300	1998	3,567	2015	1,133	1983	-4,133
1916	6,333	1989	3,633	1843	1,400	2014	-4,047
1796	6,400	1866	3,667	1910	1,433	2007	-3,800
1998	6,533	1975	3,767	2008	1,443	1990	-3,667
1877	6,600	2008	3,833	1998	1,667	2000	-3,500
2001	6,700	1925	3,900	1975	1,700	2016	-3,490
2008	6,700	2016	3,900	2016	1,812	2015	-3,480
1975	6,900	1796	4,200	2007	2,182	1989	-3,300
1995	6,900	1990	4,267	1989	2,400	2008	-3,100
2007	7,867	2007	4,833	1990	2,700	1961	-2,933

Fig. 4. The warmest winters (t_{max}, T_{max}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Tabela 9. Najchłodniejszy rok (t_{min} , T_{min}) w Paryżu (1757-2011), Berlinie (1769-2017), Warszawie (1779-2017) i Moskwie (1780-2017)

Table 9. The coldest year (*t_{min}*, *T_{min}*) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Paryż (1	757-2011)	Berlin ((1	1769-2017)	Warszawa	(1779-2017)	Moskwa (1780-2017)
t _{min}	$T_{\rm max}$	t_{\min}	$T_{\rm max}$	t _{min}	$T_{\rm max}$	t_{\min}	$T_{\rm max}$
1879	8,167	1799	6,592	1829	4,740	1941	1,683
1855	8,750	1805	6,783	1799	5,210	1888	1,808
1887	8,808	1829	6,833	1785	5,280	1907	1,808
1860	8,917	1812	6,833	1805	5,320	1908	1,917
1888	8,950	1940	7,017	1871	5,370	1942	2,125
1853	8,992	1814	7,150	1803	5,750	1893	2,192
1784	9,025	1816	7,200	1838	5,750	1788	2,275
1829	9,058	1838	7,242	1855	5,790	1902	2,358
1963	9,092	1855	7,333	1870	5,820	1933	2,608
1799	9,100	1864	7,333	1786	5,830	1881	2,642

 T_{\min} (I-XII)

Rys. 5. Najchłodniejszy rok (t_{min}, T_{min}) w Paryżu (1757-2011), Berlinie (1769-2017), Warszawie (1779-2017) i Moskwie (1780-2017) **Fig. 5.** The coldest year (t_{min}, T_{min}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Tabela. 10. Najcieplejszy rok (t_{\min}, T_{\min}) w Paryżu (1757-2011), Berlinie (1769-2017), Warszawie (1779-2017) i Moskwie (1780-2017)

Table. 10. The warmest year (t_{min}, T_{min}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

Paryż (1	757-2011)	Berlin ((1	769-2017)	Warszawa (17	(1779-2017) Moskwa (1780-2		80-2017)
t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$
2009	12,817	1872	10,583	1797	9,560	1999	6,567
1997	12,900	1834	10,600	1983	9,620	2000	6,600
2005	12,900	2008	10,617	2000	9,630	2016	6,659
2000	12,925	1868	10,775	2007	9,630	2011	6,700
2002	13,042	2007	10,783	1990	9,720	2013	6,746
1999	13,058	2016	10,825	2016	9,792	2014	6,895
2006	13,133	2000	10,942	2008	9,800	1989	7,050
2007	13,192	1779	10,983	1989	9,820	2007	7,075
2003	13,233	2015	11,250	2014	9,830	2008	7,308
2011	13,908	2014	11,458	2015	10,310	2015	7,411

Rys. 6. Najcieplejszy rok (*t*_{min}, *T*_{min}) w Paryżu (1757-2011), Berlinie (1769-2017), Warszawie (1779-2017) i Moskwie (1780-2017)

Rys. 6. The warmest year (t_{\min}, T_{\min}) in Paris (1757-2011), Berlin (1769-2017), Warsaw (1779-2017) and Moscow (1780-2017)

 T_{max} (I-XII)

491

Tabela 11. Najchłodniejszy (t_{min} , T_{min}) styczeń w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

Table 11. The coldest (t_{min}, T_{min}) January in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (177	Wiedeń (17	75-2012)	Rzym (18	Rzym (1811-2017)	
t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}
1814	-14,30	1942	-15,20	1942	-9,40	1864	1814
1987	-12,60	1803	-14,80	1830	-8,70	1880	1987
1809	-12,10	1809	-14,50	1940	-8,50	1942	1809
1774	-11,70	1838	-13,90	1838	-8,40	1858	1774
1767	-11,20	1987	-13,40	1795	-8,30	1905	1767
1942	-10,60	1861	-13,30	1848	-8,10	1850	1942
1760	-10,50	1829	-13,10	1893	-8,00	1893	1760
1941	-10,40	1850	-13,10	1823	-7,70	1859	1941
1803	-9,80	1893	-13,00	1776	-7,60	1929	1803
1867	-9,10	1848	-12,90	1799	-7,40	1891	1867

Tabela 12. Najjcieplejszy (t_{max} , T_{max}) styczeń w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

Table 12. The warmest (t_{max} , T_{max}) January in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (1779-2018)		Wiedeń (1775-2012)		Rzym (1	811-2017)
t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$
1973	1,40	1898	-0,20	1944	3,40	1974	9,60
1983	1,40	1791	-0,10	1975	3,50	2001	9,60
1824	1,60	1932	-0,10	2008	3,50	1982	9,70
1791	1,90	1866	0,00	1834	3,80	1970	9,90
1873	1,90	1983	0,20	1994	4,40	1996	9,90
1975	1,90	1975	0,40	1796	4,60	1977	10,10
1930	2,10	1882	0,60	1916	4,70	1845	10,40
2008	2,20	1992	0,60	1921	4,70	1856	10,40
1796	2,40	1930	0,90	1983	5,10	1955	10,80
1989	3,10	1925	1,80	2007	6,30	1988	10,90

Tabela 13. Najchłodniejsze (t_{min}, T_{min}) lipce w Sztokholmie (1756-2012), Tallinie (1779-2018), Wiedniu (1775-2012) i Rzymie (1811-2012)

Table 13. Coldest (t_{min}, T_{min}) July in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (177	Wiedeń (17	75-2012)	Rzym (1811-2017)		
t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}
1832	12,90	1815	12,50	1913	16,00	1980	22,00
1902	13,80	1821	12,50	1837	16,20	1909	22,10
1844	14,00	1832	12,90	1860	16,70	1843	22,20
1862	14,00	2003	12,94	1919	16,70	1913	22,20
1863	14,30	1902	13,20	1856	17,00	1966	22,30
1866	14,30	1844	13,70	1879	17,00	1910	22,40
1790	14,50	1878	13,70	1833	17,10	1948	22,40
1812	14,50	1904	13,80	1844	17,20	1815	22,50
1837	14,50	1790	13,90	1907	17,20	1833	22,50
1841	14,50	1965	13,90	1864	17,40	1816	22,70

Tabela 14. Najcieplejsze (t_{max} , T_{max}) lipce w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

 Table 14. The warmest (t_{max} , T_{max}) July in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (1779-2018)		Wiedeń (1775-2012)		Rzym (1	811-2017)
$t_{\rm max}$	$T_{\rm max}$	t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$
2003	20,60	1972	19,50	1788	22,70	2012	26,40
1818	20,80	1789	19,70	1782	22,80	1828	26,50
2006	20,80	1855	19,80	1995	22,90	1945	26,60
1783	21,10	2001	19,90	1859	23,00	2003	26,70
1826	21,10	1858	20,00	1834	23,10	1822	26,90
1914	21,10	2011	20,12	1811	23,20	2006	26,90
		2018	20,20				
1994	21,10	1826	20,30	1983	23,20	1947	27,00
1901	21,20	1927	20,30	1994	23,20	2010	27,00
2010	21,20	1914	20,80	1794	23,50	1950	27,40
1855	21,40	2010	21,52	2006	24,10	1928	27,60

Tabela 15. Najchłodniejsze (t_{min} , T_{min}) lata w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

 Table 15. The coldest (t_{min}, T_{min} summers Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775 2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (177	Wiedeń (17	75-2012)	Rzym (1811-2017)		
t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}
1902	13,60	1821	11,73	1913	16,57	1825	21,70
1907	13,80	1902	12,13	1829	16,87	1969	21,90
1862	13,85	1836	12,73	1821	16,87	1953	21,97
1832	13,85	1928	12,73	1926	16,90	1851	22,07
1864	14,00	1904	13,07	1918	17,00	1816	22,10
1833	14,05	1815	13,10	1864	17,07	1847	22,13
1962	14,25	1962	13,10	1902	17,10	1909	22,13
1844	14,30	1923	13,13	1813	17,17	1843	22,17
1836	14,40	1892	13,20	1920	17,17	1965	22,17
1928	14,45	1832	13,33	1916	17,20	1977	22,17

Tabela 16. Najcieplejsze (t_{max}, T_{max}) lata w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

 Table 16. The warmest (t_{max}, T_{max}) summers Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775 2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (1779-2017)		Wiedeń (1775-2012)		Rzym (1811-2017)	
$t_{\rm max}$	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$
1858	19,55	1972	17,27	1782	21,07	1994	25,17
1834	19,60	2002	17,47	1783	21,07	1820	25,23
1901	19,60	1936	17,53	1994	21,23	2009	25,30
1955	19,60	2006	17,56	1834	21,47	1945	25,57
1826	19,75	2010	17,69	1807	21,53	1950	25,73
1789	19,95	2011	17,85	2007	21,63	1947	25,87
2006	20,00	1858	17,87	1992	21,73	1928	25,90
2002	20,25	1826	18,00	2012	21,77	2012	25,97
1819	20,35	1789	18,07	1811	22,37	1822	26,63
1997	20,45	1834	18,37	2003	23,00	2003	26,90

Tabela 17. Najchłodniejsze (t_{min} , T_{min}) zimy w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

Table 17. The coldest (t_{min}, T_{min}) winters in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (177	Wiedeń (17	75-2012)	Rzym (1811-2017)		
t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}	t_{\min}	T_{\min}
1809	-8,667	1829	-11,833	1929	-2,30	1929	5,200
1814	-8,233	1942	-11,800	1940	-1,97	1858	5,467
1871	-8,167	1871	-11,167	1838	-1,93	1880	5,467
1942	-7,833	1809	-10,967	1942	-1,82	1942	5,700
1789	-7,700	1820	-10,533	1830	-1,59	1901	5,867
1893	-7,400	1893	-10,533	1963	-0,83	1891	5,967
1805	-7,267	1789	-10,333	1858	-0,76	1905	5,967
1767	-7,233	1838	-10,067	1901	-0,34	1850	6,067
1838	-7,100	1940	-9,500	1842	-0,02	1909	6,167
1875	-6,700	1803	-9,300	1956	-0,01	1874	6,400

Rys. 7. Najchłodniejsze (t_{min} , T_{min}) zimy w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012) **Fig. 7.** The coldest (t_{min} , T_{min}) winters in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Tabela 18. Najjcieplejsze (t_{max} , T_{max}) zimy w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

 Table 18. The warmest (t_{max} , T_{max}) winters in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Sztokholm (1756-2012)	Tallin (1	779-2017)	Wiedeń (1775-2012)		Rzym (1	811-2017)
$t_{\rm max}$	$T_{\rm max}$	t _{max}	$T_{\rm max}$	t _{max}	$T_{\rm max}$	$t_{\rm max}$	$T_{\rm max}$
1989	0,900	1990	-0,467	1796	5,644	1972	9,567
1824	1,033	2015	-0,357	1863	5,722	1912	9,567
1975	1,033	1930	-0,333	1995	5,722	1982	9,567
1822	1,067	1993	-0,100	1783	5,767	1966	9,667
1930	1,300	1949	0,000	1921	5,900	2007	9,733
1925	1,467	1975	0,033	1990	5,933	1974	9,867
1949	1,567	1961	0,133	1998	6,033	1955	9,967
1790	1,633	1992	0,167	2002	6,333	1979	10,067
1973	1,833	2008	1,053	2008	7,178	1988	10,167
2008	2,267	1925	1,267	2007	7,567	1977	10,600

Fig. 8. The warmest (t_{max} , T_{max}) winters in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Tabela 19. Najchłodniejszy rok (t_{min} , T_{min}) w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

Table 19. The coldest (t_{min}, T_{min}) year in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (1779-2017)		Wiedeń (1775-2012)		Rzym (1811-2017)	
t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}
1867	3,225	1829	1,917	1829	6,600	1850	13,967
1829	3,500	1867	2,558	1940	7,317	1851	14,008
1871	3,692	1942	2,600	1838	7,383	1847	14,517
1838	3,875	1871	2,667	1864	7,383	1826	14,567
1888	4,067	1941	2,750	1871	7,467	1849	14,592
1844	4,083	1844	2,883	1840	7,600	1854	14,592
1881	4,117	1875	2,900	1837	7,800	1825	14,600
1805	4,133	1862	2,950	1805	7,925	1835	14,642
1812	4,150	1838	2,958	1776	7,958	1837	14,642
1799	4.200	1888	2,967	1870	7.975	1956	14.658

Tabela 20. Najcieplejszy rok (t_{min} , T_{min}) w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012)

Table 20. The warmest (t_{min} , T_{min}) year in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

Sztokholm (1756-2012)		Tallin (1779-2017)		Wiedeń (1775-2012)		Rzym (1811-2017)	
t _{min}	T_{\min}	t _{min}	T_{\min}	t _{min}	T_{\min}	t_{\min}	T_{\min}
1938	8,092	1949	6,858	2006	11,192	1927	16,458
2007	8,108	1934	6,883	2002	11,317	1994	16,475
1934	8,175	2006	6,897	2003	11,433	1950	16,483
1999	8,200	1989	6,950	2009	11,450	1820	16,558
1822	8,325	2011	6,953	2011	11,558	1811	16,567
1975	8,358	2007	6,987	1994	11,592	2011	16,575
2006	8,425	2000	7,100	2000	11,667	1841	16,683
2011	8,450	1975	7,175	2012	11,792	1982	16,683
2000	8,475	2008	7,303	2008	11,867	2003	16,700
2008	8,517	2015	7,509	2007	12,100	1822	17,200

Rys. 10. Najcieplejszy rok (t_{\min}, T_{\min}) w Sztokholmie (1756-2012), Tallinie (1779-2017), Wiedniu (1775-2012) i Rzymie (1811-2012) **Fig. 10.** The warment (t_{\max}, T_{\max}) , war in Stackholm (1756-2012), Tallin (1770-2017), Wienne

Fig. 10. The warmest (t_{min} , T_{min}) year in Stockholm (1756-2012), Tallin (1779-2017), Vienna (1775-2012) and Rome (1811-2012)

MUDDAS (1532-1972)

Rys. 11. Zmiany szerokości słojów sosny (Pinus sylvestris) w Muddas (1532-1972, Szwecja);

y(x) – równanie prostej regresji Fig. 11. Changes of Scots pine (*Pinus sylvestris*) tree ring widths in Muddas (1532-1972, Sweden); y(x) – the regression equation

Rys. 12. Zmiany szerokości słojów sosny (Pinus sylvestris) w Muddas (1532-1972, Szwecja); $d_{\rm sr} = 0,998, \sigma = 0,2290$

Fig. 12. Changes of Scots pine (Pinus sylvestris) tree ring widths in Muddas (1532-1972, Sweden); $d_{\rm sr} = 0,998, \sigma = 0,2290$

Tabela 21. Minima szerokości słojów sosny (*Pinus sylvestris*) w Forfjorddalen (877-1994, Norwegia); $d_{sr} = 0.995$, $\sigma = 0.2476$

Table 21. Minima width grain pine (*Pinus sylvestris*) in Forfjorddalen (877-1994, Norway); $d_{sr} = 0.995$, $\sigma = 0.2476$

T _{inf}	$d_{ m inf}$	$t_{ m inf}$	$d_{ m inf}$
1081	0,321	1900	0,482
1074	0,420	985	0,483
1042	0,427	1680	0,485
1868	0,432	1039	0,486
1605	0,440	1885	0,488
1078	0,447	1075	0,490
1543	0,455	1453	0,494
1903	0,477	1459	0,497
1083	0,478	1091	0,498
896	0,480	1837	0,498

Rys. 13. Minima szerokości słojów sosny (*Pinus sylvestris*) w Forfjorddalen (877-1994, Norwegia); $d_{sr} = 0.995$, $\sigma = 0.2476$

Fig. 13. Minima width grain pine (*Pinus sylvestris*) in Forfjorddalen (877-1994, Norway); $d_{sr} = 0.995$, $\sigma = 0.2476$

Tabela 22. Maksima szerokości słojów sosny (*Pinus sylvestris*) w Forfjorddalen (877-1994, Norwegia); $d_{sr} = 0.995$, $\sigma = 0.2476$

Table 22. Maxima width grain pine (*Pinus sylvestris*) in Forfjorddalen (877-1994, Norway); $d_{sr} = 0.995$, $\sigma = 0.2476$

t _{sup}	d _{sup}	t _{sup}	d _{sup}	t _{sup}	d _{sup}
1020	1,527	1132	1,604	1535	1,679
1930	1,531	939	1,610	1113	1,708
1505	1,532	990	1,617	1136	1,716
882	1,535	1137	1,621	1033	1,818
1798	1,538	1141	1,634	1138	2,076
1941	1,541	1000	1,642	1135	2,397
1162	1,548	1026	1,643		
1112	1,568	1985	1,662		
1253	1,588	1114	1,668		
1251	1,600	1027	1,671		

Rys. 14. Maksima szerokości słojów sosny (*Pinus sylvestris*) w Forfjorddalen (877-1994, Norwegia); $d_{sr} = 0.995$, $\sigma = 0.2476$

Fig. 14. Maxima width grain pine (*Pinus sylvestris*) in Forfjorddalen (877-1994, Norway); $d_{sr} = 0.995$, $\sigma = 0.2476$

Tabela 23. Minima szerokości słojów dębu (*Quercus petraea*) na Pomorzu Wschodnim (966-1985); $d_{sr} = 9,999$, $\sigma = 1,4018$

Table 23. Minima grain width oak (*Quercus petraea*) Eastern Pomerania (966-1985), $d_{sr} = 9,999$, $\sigma = 1,4018$

$t_{ m inf}$	$d_{ m inf}$	$t_{ m inf}$	$d_{ m inf}$
998	4,3	1439	6,7
1043	5,2	1741	6,7
1044	5,2	1790	6,7
997	5,9	1066	6,8
1838	5,9	1007	6,9
1028	6,5	1083	6,9
1670	6,5	1129	6,9
1800	6,5	1209	6,9
1806	6,6	1096	7,1
1839	6,6	1169	7,1

Rys. 15. Minima szerokości słojów dębu (*Quercus petraea*) na Pomorzu Wschodnim (966-1985); $d_{sr} = 9,999$, $\sigma = 1,4018$

Fig. 15. Minima grain width oak (Quercus petraea) Eastern Pomerania (966-1985),

 $d_{\rm sr} = 9,999$, $\sigma = 1,4018$

Tabela 24. Maksima szerokości słojów dębu (*Quercus petraea*) na Pomorzu Wschodnim (966-1985,); $d_{sr} = 9,999$, $\sigma = 1,4018$

Table 24. Miaxima grain width oak (*Quercus petraea*) Eastern Pomerania (966-1985), $d_{st} = 9,999$, $\sigma = 1,4018$

t_{sup}	d_{sup}	t _{sup}	d_{sup}
1068	12,8	1655	13,3
1118	12,8	1828	13,3
1799	12,8	1831	13,4
1820	12,8	1682	13,5
1038	12,9	1656	13,9
1057	12,9	1014	14,0
996	13,0	1020	14,0
1052	13,0	1022	14,2
1861	13,0	1016	14,3
1113	13,1	1021	15,9
1317	13,3		

Rys. 16. Maksima szerokości słojów dębu (*Quercus petraea*) na Pomorzu Wschodnim (966-1985); $d_{sr} = 9,999$, $\sigma = 1,4018$

Fig. 16. Miaxima grain width oak (Quercus petraea) Eastern Pomerania (966-1985),

 $d_{\rm sr} = 9,999$, $\sigma = 1,4018$

Rys. 17. Zmiany temperatury powietrza w Warszawie w zimie w latach 1600-2200, F(t) – wartości obliczone (z prognozą na lata 2016-2200); T – wartości zmierzone (1779-2015). **Fig. 17.** Air temperature changes in Warsaw in Winter in the years 1600-2200. Ft) – calculated values (with a forecast for the years 2016-2200); T – values measured (1779-2015)

Rys. 18. Zmiany temperatury powietrza w Warszawie w zimie w latach 1500-2500, f(t) – wartości obliczone (z prognozą na lata 2016-2500); T – wartości zmierzone (1779-2015).

Fig. 18. Air temperature changes in Warsaw in Winter in the years 1500-2500. f(t) – calculated values (with a forecast for the years 2016-2500); T – values measured (1779-2015)

Rys. 19 Zmiany sum promieniowania słonecznego w okresie marzec-wrzesień (III-IX) na równoleżniku $\varphi = 65$ °N w ciągu ostatnich -100 000 lat, z prognozą do 100 000 lat (1900 AD, t = 0)(Boryczka, 2015) **Fig. 19.** Changes in the sums of solar radiation in the period March-September (III-IX) at the paralel $\varphi = 65$ °N in the last -100,000 years, with a forecast up tu 100,000 years (1900 AD, t = 0)(Boryczka, 2015)

Rys. 20. Porównanie zmierzonych wartości temperatury powietrza w Warszawie-Okęcie w zimie, T-średnich konsekutywnych 3-letnich w 25-leciu 1991-2015 z prognozowanymi f(t)**Fig. 20.** Comparison of measured air temperature values in Warsaw-Okęcie in Winter (T-3-year moving average) during the 25-year period 1991-2015, with predicted values f(t)

X. WYKAZ PRAC MAGISTERSKICH ZAKŁADU KLIMATOLOGII UW DOTYCZĄCYCH CYKLICZNOŚCI I TENDENCJI ZMIAN KLIMATU W EUROPIE (1984-2015)

- 1. Bogumiła Dąbrowska, 1984, Wielookresowe zmiany temperatury powietrza w Warszawie w latach 1779-1979 (Jerzy Boryczka).
- 2. Dorota Dębska, 1986, Wielookresowe zmiany opadów atmosferycznych w Warszawie w latach 1813-1980 (Jerzy Boryczka).
- 3. Małgorzata Tomasik, 1990, *Długookresowe zmiany temperatury powietrza i opadów atmosferycznych w Warszawie* (Jerzy Boryczka).
- 4. Katarzyna Grzęda, 1990, Wielookresowe zmiany opadów atmosferycznych w Krakowie w latach 1850-1987 (Jerzy Boryczka).
- 5. Konrad Klechta, 1990, *Wielookresowe zmiany temperatury powietrza w Krakowie w latach 1826-1985* (Jerzy Boryczka).
- 6. Joanna Puczyńska, 1991, *Klimat Polski w ujęciu historycznym druga polowa XVIII wieku* (Danuta Martyn).
- 7. Anna Michalska, 1992, Trend czasowy opadów atmosferycznych w Polsce w latach 1881-1980 (Jerzy Boryczka).
- 8. Anna Porowska, 1992, Zmiany wiekowe temperatury powietrza w Warszawie i Pradze w latach 1779-1976 (Jerzy Boryczka).
- 9. Jan Skrzypczuk, 1993, Wiekowe zmiany temperatury powietrza w Środkowej Anglii w latach 1659-1973 (Jerzy Boryczka).
- 10. Małgorzata Kierzkowska, 1994, Zmiany wiekowe temperatury powietrza w Alpach (XIX-XX wiek) (Jerzy Boryczka).
- 11. Edyta Olszewska, 1999, *Tendencja temperatury powietrza w Warszawie w latach 1966-1995* (Maria Stopa-Boryczka, Jerzy Boryczka).
- 12. Robert Duma, 1999, Zmiany wiekowe temperatury powietrza w Polsce w zależności od erupcji wulkanicznych i aktywności Słońca (Jerzy Boryczka).
- 13. Adam Piotrowski, 2001, Zmiany roczne pola temperatury powietrza w Kanadzie (Jerzy Boryczka, Krzysztof Olszewski).
- 14. Anna Szarek, 2001, Zmiany temperatury powietrza na Helu w okresie 1851-1995 (Jolanta Wawer).
- 15. Janusz Kołodziejek, 2001, Klimat Norwegii (Danuta Martyn).
- 16. Mariola Górska, 2003, Zmiany opadów atmosferycznych w Warszawie w latach 1966-1995 (Maria Stopa-Boryczka).
- 17. Mariusz Tomaszewski, 2003, Synchroniczne wahania temperatury powietrza i opadów atmosferycznych w XIX i XX wieku w Polsce (Jerzy Boryczka).
- 18. Rafał Płażewski, 2005, Ostrość i śnieżność zim w Warszawie w latach 1965-1995 (Urszula Kosowska-Cezak).
- 19. Małgorzata Maciejak, 2005, *Tendencje zmian wilgotności powietrza w Polsce w latach 1966-1995* (Maria Stopa-Boryczka).
- Marta Maciejak, 2005, Okresowe zmiany ciśnienia atmosferycznego w Warszawie i Krakowie w latach 1966-1995 (Jerzy Boryczka).
- 21. Przemysław Szaniawski, 2005, Zmienność temperatury powietrza w Polsce w drugiej połowie XX wieku (Elwira Żmudzka).
- 22. Karol Styś, 2006, Tendencje rocznych zmian zachmurzenia w Warszawie i Krakowie w latach 1966-1995 (Katarzyna Grabowska).
- 23. Urszula Citko, 2006, Tendencje zmian temperatury powietrza w Polsce (Jolanta Wawer).
- 24. Andrzej Tomaszewski, 2006, Rola Oscylacji Północnoatlantyckiej w kształtowaniu opadów atmosferycznych we Wrocławiu w XX wieku (Elwira Żmudzka).
- Ewa Leszczyńska, 2006, Wpływ Oscylacji Północnoatlantyckiej (NAO) na okresowe zmiany temperatury powietrza w Europie w XIX – XX wieku (na przykładzie Wrocławia i Marsylii (Jerzy Boryczka).
- 26. Krzysztof Baczyński, 2007, Wpływ Oscylacji Północnoatlantyckiej (NAO) na okresowe zmiany temperatury powietrza w Paryżu w XIX i XX wieku (Jerzy Boryczka).
- 27. Kalecińska Katarzyna, 2007, *Ochłodzenia i ocieplenia klimatu Europy w XIX-XX wieku*. (Jerzy Boryczka)
- 28. Aleksandra Wojtczak, 2007, Wpływ Oscylacji Południowej (ENSO) na wybrane elementy klimatu Australii i pacyficznych wybrzeży Ameryki Południowej (Krzysztof Olszewski).
- 29. Piotr Gieszcz, 2008, Okresowość i tendencje zmian klimatu Arktyki (Jerzy Boryczka).

- 30. Magdalena Gozdecka, 2008, Tendencje zmian opadów atmosferycznych w Polsce w latach 1951-1990 (Jolanta Wawer).
- 31. Monika Marks, 2008, Cykliczność i tendencje zmian hydrometeorów w Warszawie (Jolanta Wawer).
- 32. Hanna Gołdowska, 2008, Wpływ Oscylacji Północnoatlantyckiej (NAO) na okresowe zmiany temperatury powietrza w Polsce w XIX - XX wieku (Jerzy Boryczka).
- 33. Michał Łopacki, 2008, Wpływ aktywności Słońca na okresowe zmiany cyrkulacji atmosferycznej w Europie (Jerzy Boryczka).
- 34. Łukasz Piech, 2009, Żmienność cyrkulacji atmosferycznej nad środkową częścią Europy w II połowie XX wieku (Elwira Żmudzka).
- 35. Katarzyna Brakoniecka, 2009, Okresowe zmiany temperatury powietrza w Europie w XIX i XX wieku i ich przyczyny (Jerzy Boryczka).
- 36. Łukasz Pawłowski, 2009, Okresowe zmiany klimatu Szwecji w ostatnich stuleciach według danych dendrologicznych (Jerzy Boryczka, Maria Stopa-Boryczka).
- 37. Grzegorz Maksymiuk, 2009, Wpływ Oscylacji Północnoatlantyckiej (NAO) na opady atmosferyczne w Warszawie w latach 1825 1998 (Katarzyna Grabowska).
- 38. Magdalena Pawlak, 2010, Zachmurzenie w Polsce i jego związek z typami cyrkulacji atmosferycznej (1966-1995 (Elwira Żmudzka).
- 39. Monika Lisowska, 2011, Wpływ cyrkulacji atmosferycznej na termiczne dni charakterystyczne w Warszawie w latach 1976-2005 (Krzysztof Olszewski.
- 40. Justyna Konopka, 2012, Warunki opadowe w Warszawie (Okęcie) w latach 1951-2010 (Jolanta Wawer)
- 41. Maria Szepietowska, 2013, Warunki termiczne w Warszawie (Okęcie) w latach 1951-2010 (Jolanta Wawer).
- 42. Anna Tołoczko, 2013, Wpływ cyrkulacji atmosferycznej na występowanie okresów posusznych w Polsce Północno-Wschodniej (1951-2010) (Bożena Kicińska).
- Błażek E., Skrzypczuk J., 2001, *Wykaz prac magisterskich wykonanych w Zakładzie Klimatologii w latach 1952-2001*, [w:] Prace i Studia Geograficzne, t. 28, Wyd. UW, s. 283-300.
- Stopa-Boryczka M., Boryczka J., Wawer J., Dobrowolska M., 2011, Prace i Studia Geograficzne, Suplement 47, 60 lat działalności naukowej i dydaktycznej Zakładu Klimatologii Wydziału Geografii i Studiów, Wyd. UW (WGSR), Warszawa, (Wykaz prac magisterskich : 2001-2010, s 80-86).
- Stopa-Boryczka M., Boryczka J., 2016, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXV. Badania klimatu Europy w różnych skalach przestrzennych (w publikacjach Zakładu Klimatologii UW, 1951-2016) (red. M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski), Wyd. UW, Warszawa, ss. 415, (VIII. Wykaz prac magisterskich wykonanych w Zakładzie Klimatologii Uniwersytetu Warszawskiego w latach 1952-2015,s. 309-334

Prace_mgr_zk.pdf (z lat 2011-2015).

XI. LITERATURA

- Alley R.B., 2000, The Younger Dryas cold interval as viewed fromcentral Greenland. Quat. Sci. Rev., 19, 213-226.
- Bond G., Showers W., Cheseby M., Lotti r., Almasi P., DemenocaL P., Priore P., Cullen H., Hajdas I., Bonani G., 1997 – A pervasive millennial-scale cycle in North Atlantic Holoceneand glacial climates. Sci., 278 (5341), 1257-1266
- Boryczka J., 1984, Model deterministyczno-stochastyczny wielookresowych zmian klimatu [Deterministic and stochastic model of multi-periodic climate changes], Wyd. UW, Warszawa
- Boryczka J., 1993, Naturalne i antropogeniczne zmiany klimatu Ziemi w XVII-XXI wieku, Wyd. UW, Warszawa, ss. 400
- Boryczka J., 1998, Zmiany klimatu Ziemi, Wyd. Akademickie Dialog, Warszawa, ss. 165
- Boryczka J., Stopa-Boryczka M., Baranowski D., Kirchenstein M., Błażek E., Skrzypczuk J., 2003, Atlas wspólzależności parametrów meteorologicznych i geograficznych w Polsce, t. XVII. Mroźne zimy i upalne lata w Polsce (red. M. Stopa-Boryczka, J. Boryczka), Wyd. UW, ss. 297
- Boryczka J., Stopa-Boryczka M., Pietras K., Bijak S., J., Błażek E., Skrzypczuk J., 2005, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XIX. Cechy termiczne klimatu Europy (red. M. Stopa-Boryczka, J. Boryczka), Wyd. UW, ss.184.
- Boryczka J., Stopa-Boryczka M., Wawer J., Grabowska K., Dobrowolska M., Osowiec M., Błażek E., Skrzypczuk J., 2010, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXV, Zmiany klimatu Warszawy i innych miast Europy w XVII-XXI wieku, Wyd. UW, ss. 417.
- Boryczka J., Stopa-Boryczka M, Unton-Pyziołek A., Gieszcz P., 2010, Ochłodzenia i ocieplenia klimatu Północnej Półkuli Ziemi (na podstawie wahań izotopu tlenu $\delta^{18}O$ i danych dendrologicznych), [W:] Atlas wspólzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXV, s. 88-98.
- Boryczka J., Stopa-Boryczka M., Unton-Pyziołek A., Gieszcz P., 2010, Cooling and Warming of Climate of the Earth's Northern Hemisphere (on the basis of fluctuations of the oxygen isotope $\Box'^\Box \Box$ and dendrological data), Miscellanea Geographica, vol. 14, s. 47-58.
- Boryczka J., Stopa-Boryczka, Unton-Pyziołek A., Gieszcz P., 2011, Zmiany klimatu Półkuli Północnej (na podstawie wahań promieniowania słonecznego i izotopu tlenu δ¹⁸O). Prace i Studia Geogr., t. 47, Wyd. WGSR UW, s. 25-32.
- Boryczka J., Stopa-Boryczka M., Kossowska-Cezak U., Wawer J., 2012, Verification forecasts concerning of periodic changes in the climate of Warsaw in the period, [w:] Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXVIII pt. Stan zanieczyszczenia atmosfery w Warszawie i innych miastach Polski, Wyd. UW, s.431-451.
- Boryczka J., Stopa-Boryczka M., Kossowska-Cezak U., Wawer J., 2012, Verification of forecasts of periodic changes in the climate of Warsaw in the period 1779-2010, Miscellanea Geographica, vol.16, 16-22.
- Boryczka J., Stopa-Boryczka M. Kossowska-Cezak U., Wawer J., 2012 c, Weryfikacja prognoz okresowych zmian temperatury powietrza w Warszawie w latach 1779-2010, Prz. Geof., 57, 3-4, 343-362
- Boryczka J., Stopa-Boryczka M., Kossowska-Cezak U., Wawer J., 2013, Weryfikacja prognoz okresowych zmian opadów atmosferycznych w Polsce w latach 1813-2010, [w:] Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXIX, Ocena klimatu na potrzeby lotnictwa w Warszawie i innych miastach Polski, s. 382-402.
- Boryczka J., Stopa-Boryczka M., 2014, Atlas wspólzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXI-XXXII, Modele empiryczne przestrzennych i czasowych zmian klimatu Europy z wyodrębnieniem Polski (ważniejsze wyniki badań), (red.: K. Błażejczyk, M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski), Wyd. WGSR UW, ss. 422.
- Boryczka J., Stopa-Boryczka M., 2015, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXIII. Zmiany wiekowe klimatu Europy z uwzględnieniem prognoz w XXI wieku i ich weryfikacja (red.: K. Błażejczyk, M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski), Wyd. UW, Warszawa, ss. 444.
- Boryczka J., 2015, Zmiany klimatu Ziemi (wydanie drugie rozszerzone), Wyd. WGSR UW, Warszawa, ss. 280.
- Boryczka J. Stopa-Boryczka M., Kossowska-Cezak U., Wawer J, 2015, Weryfikacja prognoz okresowych zmian temperatury powietrza w Europie w XX-XXI wieku, Prz. Geof. LX 2015, 3-4, 133-161.
- Boryczka J. Stopa-Boryczka M., Kossowska-Cezak U., Wawer J, 2015, Zależność przebiegu rocznego temperatury powietrza od aktywności Słońca (na przykładzie Warszawy (1951-2010), [w:] Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXIII, Zmiany wiekowe klimatu Europy z uwzględnieniem prognoz w XXI wieku i ich weryfikacja, Wyd. WGSR UW, s. 363-375.

- Boryczka J., Stopa-Boryczka M., 2017, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce t. XXXVI. Postęp badań zmian klimatu Ziemi w ostatnim tysiącleciu (XI-XXI), red. M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski, Wyd. UW, Warszawa, ss. 407.
- Briffa K., Cook E., 1990, Methods of response function analysis [w:] Cook E., Kairiukstis L. (red.) Methods of dendrochronology: applications in the environmental sciences, IIASA, Kluwer Academic Publishers, Boston.
- Douglass A.E., 1941, Age of Forestdale Ruins Excavated in 1939, Tree-Ring Bulletin Vol. 8, No. 2 (Laboratory of Tree-Ring Research, University of Arizona, 1937)
- Douglass A.E , 1944, Tree-Ring Dates from the Forestdale Valley, East-Central Arizona, Tree-Ring Bulletin Vol.7, No. 2
- Fritts H.C., 1976, Tree Rings and Climate, Academic Press, London.
- Girguś R., Strupczewski W., 1965, Wyjątki ze źródel historycznych o nadzwyczajnych zjawiskach hydrologiczno-meteorologicznych na ziemiach polskich w wiekach od X do XVI, (red. A. Rojecki), Wyd. K i Ł Warszawa.
- Intergovernmental Panel on Climate Change, IPCC, 1990, Scientific Assessment of Climate Change Report of Working Group I, Cambridge University Press, 365 pp
- IPCC, 1995, Climate change 1995. The Scientific of Climate Change, Cambridge University Press, 572 pp
- IPCC, 2001. Climate change 2001. The Scientific Basis, Cambridge University Press, 944 pp
- IPCC, 2007, Climate change 2007. The physical science basis [w:] Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M.,
- Intergovernmental Panel on Climate Change, IPCC (2012)
- Miller H. L. (ed.) Contrbution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge
- Johnsen S. J., Dansgaard W., Clausen H. B., Longway C. C., 1970, Climatic oscillations 1200-2000 A.D., Nature, nr 227, London
- Jones P. D., Jonsson T., Wheeler D., 1997, Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland, Int. J. Climatol., 17, s. 1433-1450
- Klein Tang A. M. G., Wijgard J. B. et al., 2002, *Daily data set of 20th century surface air temperature and precipitaton series for European Climate Assement (ECA)*, Int. J. Climatology, 22, 1441-1453
- Kondratiev K.J., Nikolski G. A, 1970, Solar radiation and solar activity, Quart. J. Royal. Meteor. Soc., no 96
- Kossowska-Cezak U., 1995, Lato w Polsce na tle sezonów letnich ostatnich 120 lat, Materiały konferencji "Klimat i bioklimat miast", Wyd, U. Ł.
- Kossowska-Cezak U., 2005, Współczesne ocieplenie a codzienne wartości temperatury średniej dobowej w Warszawie [w:] Ekstremalne zjawiska hydrologiczne i meteorologiczne (red. E Bogdanowicz, U. Kossowska-Cezak, J. Szkutnicki) PTGeof, IMGW, Warszawa
- Kossowska-Cezak, U., Twardosz R., 2013, Niezwykle chłodne sezony letnie w Europie Środkowej i Wschodniej (1951-2010). Prz. Geof., t. 58, nr 1-2, s. 25-39.
- Kossowska-Cezak U., Twardosz R., 2017, Anomalie termiczne w Europie (1951-2010). IGiGP UJ, Kraków, ss.183.
- Kożuchowski K., Boryczka J., 1997, Cykliczne wahania i trendy czasowe zmian poziomu morza w Świnoujściu (1811-1990), Przegl. Geof. t. 42, z.1
- Lamb H. H., 1974, Volcanic dust in the atmosphere with a chronology and assessment of meteorological, Phil. Transactions Roy. Soc., ser.A, 226
- Lorenc H., 1994, Symptomy zmian klimatu w strefach ograniczonych wpływów antropogenicznych, Mat. Bad. IMGW, Meteorologia, 19
- Lorenc H., 2000, Studia nad 202-letnią (1779-1998) serią temperatury powietrza w Warszawie oraz ocena jej wiekowych tendencji, Mat. Bad. IMGW, Meteorologia, 31
- Manley G., 1974, Central England temperatures: monthly means 1659 to 1973, Quart. J. Roy. Meteor. Soc., no 100
- Marks L. 2016, Zmiany klimatu w holocenie, Przegląd Geologiczny, vol. 64, nr 1.
- Marsz AA. (ed.), 1999, *Wplyw stanu termicznego powierzchni oceanu na modyfikacje cyrkulacji atmosferycznej w wymiarze klimatologicznym* [Impact of the thermal condition of the ocean's surface on the modification of atmospheric condition in the climatological dimension]', *conference proceedings*, Gdynia 6 May 1999.

⁵⁰⁸

Milankovich, 1930. Mathematiche Klimalehre und astronomische Theorie der Klimaschwankungen

- Miłanković M., 1938, Matematiczeskaja klimatologija i astronomiczeskaja teoria kolebanij klimata, ONTU, Moskwa
- Miler A. T., 2013, Kompleksowa metodyka oceny stosunków wodnych w lasach. Poznań, ss. 135, https://www.researchgate.net/.../288835868

Miler A. T., Kamiński B., Czerniak A., Grajewski S., Okoński B., Krysztofiak A., Sobalak M.,,

National Climatic Data Center,:http://www.ncdc.noaa.gov/cgi-bin/paleo/webmapper.cgi

- Niedźwiedź T.,1994, *Charakterystyka synoptyczna klimatu* [w:] *Atlas Rzeczpospolitej Polskiej*, Polska Akademia Nauk, Instytut Geografii i Przestrzennego Zagospodarowania, Warszawa
- Paszyński J., Niedźwiedź T., 1991, *Klimat*, [w:]: Starkel L. (red.), *Geografia Polski. Środowisko przyrodnicze*, PWN Warszawa.
- Petit J.R., Jouzel J., Raynaud D. i in., 1999, Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature 399, p. 429
- Przybylak R., Wójcik G., Marciniak K., Chorążyczewski W., Nowosad W., Oliński P, Syta K. 2004, Zmienność warunków termiczno-opadowych w Polsce w okresie 1501-1840 w świetle danych historycznych, Przegląd Geograficzny, PAN IGPZ, Warszawa, t. 76, z.1.
- Przysiecka K., 2007, Opracowanie strategii ochrony obszarów mokradlowych na terenie leśnych kompleksów promocyjnych na przykładzie LKP Lasy Rychtalskie, Poznań, ss. 150, https://docplayer.pl/14657669-Sprawozdanie-koncowe.html
- Rakipowa L. R., 1960, O wozdiejstwie solniecznoj aktiwności na obszczuju cirkulacju atmosfiery, Astronom. sbornik, III i IV
- Reznikov A. P., 1982, Priedskazanije jestiestwiennych processow obuczajuszcziejsja sistiemoj, Nowosybirsk
- Rogers J. C., 1984, A comparison of the mean winter pressure distribution in the extremes of the North Atlantic Oscillation and Southern Oscillation [w:] H. Van Loon (red.), Studies in Climate, NCAR Technical Note, February 1984, Boulder, Colorado, s. 208-241
- Rojecki A., 1956, O najdawniejszych obserwacjach meteorologicznych na ziemiach Polski, "Przegląd Geofizyczny", R. I. z. 3-4
- Rojecki A., 1968, O obserwacjach meteorologicznych w Warszawie w wieku XVII-XIX, "Przegląd Geofizyczny", t. XIII, z. 1
- Stopa-Boryczka M. (ed.), 2003, *Studies on the Climate of Warsaw*, Warsaw University, Faculty of Geography and Regional Studies
- Stopa-Boryczka M., Boryczka J., Bijak Sz., Cebulski R., Błażek E., Skrzypczuk J., 2007, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce, t. XX-XXI, Cykliczne zmiany klimatu Europy w ostatnim tysiącleciu według danych dendrologicznych, red. M. Stopa-Boryczka, Wyd. UW, Warszawa, ss. 266.
- Stopa-Boryczka M., Boryczka J., 2009, Wpływ czynników geograficznych na klimat Europy, Prace i Studia Geogrficzne, T. 41, ss. 191-208
- Stopa-Boryczka M ., Boryczka J., 2016, Atlas wspólzależności parametrów meteorologicznych i geograficznych w Polsce, t. XXXIV, Klimat Europy – Przeszłość, teraźniejszość, przyszłość w kolejnych 33 tomach Atlasu I, 1974 – XXXIII, 2015) (red.: K. Błażejczyk, M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski), Wyd. WGSR UW, ss. 462.
- Stopa-Boryczka M., Boryczka J., 2016, Atlas współzależności parametrów meteorologicznych geograficznych w Polsce, t. XXXV. Badania klimatu Europy w różnych skalach przestrzennych (w publikacjach Zakładu Klimatologii UW, 1951-2016) (red. M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski), Wyd. UW, Warszawa, ss. 415.
- Stopa-Boryczka M., Boryczka J., 2017, Atlas wspólzależności parametrów meteorologicznych geograficznych w Polsce, t. XXXVII. Postęp badań zmian klimatu Polski i ich znaczenie dla życia i gospodarczej działalności człowieka, (red. M. Stopa-Boryczka, J. Boryczka, J. Wawer, W. Żakowski), Wyd. UW, Warszawa, ss. 444
- Trepińska J., 1973, Zmiany w przebiegu temperatury powietrza w Krakowie w XIX i XX wieku, Przegl. Geofiz., z. 1-2
- Trepińska J., 1988, Wieloletni przebieg ciśnienia i temperatury powietrza w Krakowie na tle ich zmienności w Europie, Rozprawy Habilitacyjne UJ, 140, Kraków
- Trepińska J., 2001, *Fluktuacje termiczne w Europie od malej epoki lodowej do końca XX wieku*, Prace i Studia Geograficzne, t. 29, Warszawa, s. 73-77

Twardosz R., 2009, Fale niezwykłych upałów w Europie na początku XXI wieku. Extraodinary heat waves In

the beginning of the 21 st century in Europe, Przegl. Geof., r. LIV, z. 3-4, Wyd. Nauk. PWN, Warszawa Twardosz R., Kossowska-Cezak U., 2013, Niezwykle anomalie termiczne w strefie klimatu podbiegunowego obszaru Atlantycko-Europejskiego, Problemy Klimatologii Polarnej nr 23, s. 93-105.

Walanus A. Nalepka D. 2005, Wiek rzeczywisty granic chronozon wyznaczonych w latach radiowêglowych. Bot. Guidebooks, 28:313–321.

Woś A., 2010, Klimat Polski w drugiej połowie XX wieku, Wyd. Nauk. UAM, ss. 489, Poznań

Zieliński R., 1972, Tablice Statystyczne, PWN, Warszawa, ss. 392

Zielski A., Krąpiec M., 2004, Dendrochronologia, PWN Warszawa.

Rome – Tempel (52.47N, 13.40E) 617103840000 GHCN V3 adj – homogenized Berlin-Tempel (52.47N, 13.40E) 617103840000 GHCN V3 adj – homogenized Moskva (55.83N, 37.62E) 638276120000 GHCN V3 adj - homogenized

Station Name	Lat	Lon	ID	Pop.	Years
Warszawa-Okecie	52.2 N	21.0 E	635123750000	1,377,000	1880 - 2017
Krakow	50.1 N	19.8 E	635125660000	652,000	1951 - 2017
Wroclaw Ii	51.1 N	16.9 E	635124240000	523,000	1880 - 2017
www.giss.nasa.gov	/.data/updat	e/			